CLOSE
Mario Tama/Getty Images
Mario Tama/Getty Images

The Difference Between Tylenol, Aspirin, Advil, and Aleve

Mario Tama/Getty Images
Mario Tama/Getty Images

It’s the morning after a wild night out. You stumble to the medicine cabinet and stare blearily at the array of over-the-counter painkillers, wondering which one will bring the quickest relief (and why all the labels have to be so darn bright). Fortunately, you’ve taped this article to the cabinet door, and instead of guessing, you can just check our handy guide below.

TYLENOL (ACETAMINOPHEN)

There are two main types of non-prescription painkillers: acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which includes basically everything that is not acetaminophen. Acetaminophen is the most popular pain-relieving option the world over, and it works by encouraging the brain to stop sending pain signals. 

Best for: Headaches and muscle aches

Not great for: Inflammation and joint pain

Watch out for: Taking too much acetaminophen, or mixing acetaminophen and alcohol, can lead to liver damage, and acetominophen is one of the drugs most frequently involved in overdose. Check the bottle to find out the maximum safe dose, and take it seriously.

ASPIRIN (ACETYLSALICYLIC ACID)

Aspirin and other NSAIDs work by decreasing your body’s production of enzymes that create pain-related chemicals. When prescribed by a doctor and taken every day, a small dose of aspirin can help lower the risk of heart attack or stroke for some people.

Best for: Reducing cardiovascular risk

Not great for: Intense pain  

Watch out for: Aspirin can be hard on the gut, liver, and kidney. Talk to your doctor to find out if it’s safe for you. Use caution when giving aspirin to children.

ADVIL AND MOTRIN (IBUPROFEN)

Ibuprofen is a pretty versatile drug, with the power to help with a broad range of aches, pains, and other complaints. 

Best for: Hangover (there you go!), menstrual cramps, sore or injured muscles, sinus pain, earaches, and toothaches

Not great for: Chronic headache

Watch out for: Ibuprofen carries most of the same risks as aspirin but is often available in higher doses, which can be even harder on your body. It’s also fast-acting and fast-fading, which might lead to more frequent doses.

ALEVE (NAPROXEN)

Naproxen is slow to kick in but longer lasting than ibuprofen, making it a good choice for people with mild-to-moderate chronic pain.

Best for: Inflammation, hangover, lasting headache, arthritis

Not great for: Quick pain relief

Watch out for: Like all NSAIDs, naproxen carries some cardiovascular risk and is associated with stomach distress.

THE UPSHOT

Taking too much of any painkiller is bad for you, and not just in the ways we’ve already discussed. People who rely on over-the-counter medication for daily headaches often find that the medication itself can cause additional headaches, called rebound headaches. If you find yourself taking over-the-counter drugs for the same reason every day, it’s time to talk to your doctor about the underlying issue and other treatment options.

nextArticle.image_alt|e
iStock
arrow
science
The Surprising Reason Why Pen Caps Have Tiny Holes at the Top
iStock
iStock

If you’re an avid pen chewer, or even just a diehard fan of writing by hand, you’re probably well acquainted with the small hole that tops off most ballpoint pen caps, particularly those classic Bic Cristal pens. The reason it’s there has nothing to do with pen function, it turns out. As Science Alert recently reported, it’s actually designed to counter human carelessness.

Though it’s arguably unwise—not to mention unhygienic—to chomp or suck on a plastic pen cap all day, plenty of people do it, especially kids. And inevitably, that means some people end up swallowing their pen caps. Companies like Bic know this well—so they make pen caps that won’t impede breathing if they’re accidentally swallowed.

This isn’t only a Bic requirement, though the company’s Cristal pens do have particularly obvious holes. The International Organization for Standardization, a federation that sets industrial standards for 161 countries, requires it. ISO 11540 specifies that if pens must have caps, they should be designed to reduce the risk of asphyxiation if they’re swallowed.

It applies to writing instruments “which in normal or foreseeable circumstances are likely to be used by children up to the age of 14 years.” Fancy fountain pens and other writing instruments that are clearly designed for adult use don’t need to have holes in them, nor do caps that are large enough that you can’t swallow them. Any pen that could conceivably make its way into the hands of a child needs to have an air hole in the cap that provides a minimum flow of 8 liters (about 2 gallons) of air per minute, according to the standard [PDF].

Pen cap inhalation is a real danger, albeit a rare one, especially for primary school kids. A 2012 study [PDF] reported that pen caps account for somewhere between 3 and 8 percent of “foreign body aspiration,” the official term for inhaling something you’re not supposed to. Another study found that of 1280 kids (ages 6 to 14) treated between 1997 and 2007 for foreign body inhalation in Beijing, 34 had inhaled pen caps.

But the standards help keep kids alive. In that Beijing study, none of the 34 kids died, and the caps were successfully removed by doctors. That wasn’t always the case. In the UK, nine children asphyxiated due to swallowing pen caps between 1970 and 1984. After the UK adopted the international standard for air holes in pen caps, the number of deaths dropped precipitously [PDF]. Unfortunately, it’s not foolproof; in 2007, a 13-year-old in the UK died after accidentally swallowing his pen cap.

Even if you can still breathe through that little air hole, getting a smooth plastic pen cap out of your throat is no easy task for doctors. The graspers they normally use to take foreign bodies out of airways don’t always work, as that 2012 case report found, and hospitals sometimes have to employ different tools to get the stubbornly slippery caps out (in that study, they used a catheter that could work through the hole in the cap, then inflated a small balloon at the end of the catheter to pull the cap out). The procedure doesn’t exactly sound pleasant. So maybe resist the urge to put your pen cap in your mouth.

[h/t Science Alert]

nextArticle.image_alt|e
Mark Ralston/AFP/Getty Images
arrow
Big Questions
What Causes Sinkholes?
Mark Ralston/AFP/Getty Images
Mark Ralston/AFP/Getty Images

This week, a sinkhole opened up on the White House lawn—likely the result of excess rainfall on the "legitimate swamp" surrounding the storied building, a geologist told The New York Times. While the event had some suggesting we call for Buffy's help, sinkholes are pretty common. In the past few days alone, cavernous maws in the earth have appeared in Maryland, North Carolina, Tennessee, and of course Florida, home to more sinkholes than any other state.

Sinkholes have gulped down suburban homes, cars, and entire fields in the past. How does the ground just open up like that?

Sinkholes are a simple matter of cause and effect. Urban sinkholes may be directly traced to underground water main breaks or collapsed sewer pipelines, into which city sidewalks crumple in the absence of any structural support. In more rural areas, such catastrophes might be attributed to abandoned mine shafts or salt caverns that can't take the weight anymore. These types of sinkholes are heavily influenced by human action, but most sinkholes are unpredictable, inevitable natural occurrences.

Florida is so prone to sinkholes because it has the misfortune of being built upon a foundation of limestone—solid rock, but the kind that is easily dissolved by acidic rain or groundwater. The karst process, in which the mildly acidic water wears away at fractures in the limestone, leaves empty space where there used to be stone, and even the residue is washed away. Any loose soil, grass, or—for example—luxury condominiums perched atop the hole in the ground aren't left with much support. Just as a house built on a weak foundation is more likely to collapse, the same is true of the ground itself. Gravity eventually takes its toll, aided by natural erosion, and so the hole begins to sink.

About 10 percent of the world's landscape is composed of karst regions. Despite being common, sinkholes' unforeseeable nature serves as proof that the ground beneath our feet may not be as solid as we think.

A version of this story originally ran in 2014.

SECTIONS

arrow
LIVE SMARTER