ExoMars Launched Today to Search for Signs of Life on the Red Planet

Earlier today, March 14, at Baikonur Cosmodrome in Kazakhstan, the first phase of the ExoMars mission launched atop a Russian Proton rocket. Its destination is the red planet, and its mission is to find "biosignatures," or scientific markers of life. As of press time, the launch was proceeding as planned, according to the European Space Agency (ESA).

ExoMars is short for "exobiology on Mars," and is a joint collaboration between the ESA and Roscosmos, the Russian Space Agency. Today's launch included a satellite called the Trace Gas Orbiter. As its name suggests, the orbiter is designed to study trace gases, which make up less than 1 percent of the Martian atmosphere. One such gas, methane, is vital to understanding life on Mars. Because the gas survives only a matter of centuries before breaking down, any methane registered will have to have been produced relatively recently by active volcanoes or microorganisms. Either source would be exciting, and planetary scientists will use other trace gases in the atmosphere to determine the origin. Sulfur dioxide in the air would suggest volcanism; carbon-12 would suggest life.


This phase of the ExoMars mission will also launch a prototype "entry, descent, and landing" module named Schiaparelli. (It's named after the 19th-century Italian astronomer Giovanni Schiaparelli, who mapped Mars based on his telescopic observations. Features he labeled "channels" in Italian were mistranslated into English as "canals." American astronomer Percival Lowell ran with the notion, creating his own maps of a Mars covered with imaginary waterways—and thus the notorious "canals of Mars" were born.)

Schiaparelli is designed to test technologies for setting payloads gently on Mars. As it approaches the surface in October, it will orient itself and engage its parachute systems and landing engines. Meanwhile, an onboard instrument array called AMELIA (Atmospheric Mars Entry and Landing Investigation and Analysis) will measure wind speeds and atmospheric variables during the descent. Because the landing will take place during Mars's dust storm season, one of the instruments will look into the role of electric forces on dust lifting, the mechanism that initiates dust storms. The information gathered will be invaluable for future missions, including the second phase of ExoMars, which launches in 2018 and will set a rover on the Martian surface in 2019.

The Trace Gas Orbiter will circle Mars at an altitude of 400 kilometers and carries four scientific instruments. The Atmospheric Chemistry Suite (ACS) and the Nadir and Occultation for Mars Discovery (NOMAD) will scan for trace gases. The Colour and Stereo Surface Imaging System (CASSIS) will study areas identified as possible trace gas sources, and help scientists determine what geologic processes are at work there. The Fine Resolution Epithermal Neutron Detector (FREND) can map the hydrogen content of regions of the Martian surface, going one or two meters deep.

The Schiaparelli lander, meanwhile, has enough battery life for two to eight Martian days. (Export controls prevented ESA designers from using a Russian-made radioisotope thermoelectric generator, which could have provided years of power.) In addition to gathering data during the descent, once the module is safely on the ground, it will analyze electric fields on the Martian surface—a first for any mission—and study atmospheric transparency, humidity, wind speed, and wind direction.


Before ExoMars was a joint ESA-Roscosmos mission, it was a joint ESA-NASA mission. In 2012, however, NASA withdrew, its planetary science budget having been slashed. (A year earlier, facing a starvation budget, NASA was also forced to withdraw from a different joint mission with ESA to the Jovian system. On that mission, NASA was to explore Europa while ESA went to Ganymede.) The loss of NASA was a blow to ExoMars and a big problem for ESA, which had already invested hundreds of millions of euros in technology development and was counting on NASA to provide a launch vehicle, communications package, instrumentation, and eventually, a lander for the rover. (Ultimately, NASA contributed only the communications system.) Roscosmos saved the day with its rockets, instruments, and for the next phase, a lander.

Neither agency—ESA or Roscosmos—has a perfect track record of missions to Mars. (NASA's Mars record is likewise marked with crashes and disappearances. "Mars is hard," as Jet Propulsion Laboratory engineers are known to say. With respect to landings, Mars has just enough atmosphere that it has to be dealt with, but not enough that it can be much help.) Russia's last two Mars missions—Fobos-Grunt in 2011 and Mars 96 in 1996—never escaped low Earth orbit. ESA's Beagle-2 lander disappeared before making contact with the surface in 2003. It was declared lost, though NASA's Mars Reconnaissance Orbiter found it last year. As it turns out, Beagle-2 landed successfully, though part of its solar panel array failed to deploy, obstructing its communications package.

A successful ExoMars mission will entail the spacecraft arriving at Mars in October, at which time the Trace Gas Orbiter and lander will separate. On October 19, the satellite will be placed into Martian orbit and Schiaparelli will begin its entry, descent, and landing. The Trace Gas Orbiter will then spend just over one year "aerobraking," in which it is gently lowered to its science-ready orbital altitude of 400 kilometers. The science mission begins in December 2017.

The Trace Gas Orbiter will be the second spacecraft ESA has placed into orbit around Mars. The first was Mars Express on Christmas Day 2003—the same mission in which Beagle-2 was lost. Mars Express remains in Martian orbit and is currently studying the planet's surface and subsurface. 

Send Your Name to Space on NASA's Latest Mars Lander

Humans may not reach Mars until the 2030s (optimistically), but you can get your name there a whole lot sooner. As reports, NASA is accepting names from the public to be engraved on a small silicon microchip that's being sent into space with their latest Mars lander, InSight.

All you have to do is submit your name online to NASA, and the space agency will put it on the lander—in super-tiny form, of course—which will set off for Mars in May 2018.

This is the public's second shot at getting their name to Mars: NASA first put out a call for names to go to the Red Planet with InSight in 2015. The planned 2016 launch was delayed over an issue with one of the instruments, and since the naming initiative was so popular—almost 827,000 people submitted their names the first time around—they decided to open the opportunity back up and add a second microchip.

A scientist positions the microchip on the InSight lander.
NASA/JPL-Caltech/Lockheed Martin

NASA is encouraging people to sign up even if they've sent in their names for other mission microchips. (The space agency also sent 1.38 million names up with Orion's first test flight in 2014.) You can put your name on both of InSight's microchips, in other words, as well as any future missions. The agency's "frequent flyer" program allows you to keep track of every mission to which your name is attached. Interplanetary fame, here you come.

You can submit your name for the InSight mission until November 1 using this form. If you miss the deadline, though, don't worry too much: You'll soon be able to submit your name for Exploration Mission-1's November 2018 launch.


Big Questions
Who Owns the Land on Mars?

Nicolas Nelson:

“Who owns the land on Mars? Suppose I go there and [claim the planet by right of conquest or first discovery] and say ‘Hey, I’m selling the whole planet...'"

Sorry, friend, can’t do that.

The Outer Space Treaty of 1967 clearly states that all extraterrestrial real estate “belongs to all mankind” and cannot be claimed as sovereign territory by any nation-state. That kind of sovereign ownership used to be fundamental to any subsequent private ownership claims: the “crown” (or whatever government) had to deed it to you somehow. Nowadays, land ownership can derive from a legal regime, either a nation’s constitution (which inherited “sovereignty” from the old monarchies) or by an international treaty that establishes such a regime … which in this case is exactly what the Outer Space Treaty does.

On the other hand, the OST-1967 does not make private ownership illegal in space or on other planets. Like any good legal regime, the OST-1967 laid a foundation, and later laws passed in nations that are signatories to that treaty have been building upon it. For instance, both Luxembourg and the United States of America have passed laws that clarify property ownership of “space resources,” whether acquired in free-fall (like asteroids, comets, or even the solar flux that photovoltaic panels turn into electricity) or on a planetary surface, or beneath it (like any resources you collect on Mars … or Venus or whatever).

So, as I understand it currently, you can land on Mars and set up your settlement: you own all the stuff you brought with you, but not the land you plopped it onto.

But as your construction bots bulldoze regolith up onto your inflatable dormitory to protect it from radiation, that regolith is now a “resource” that you’ve collected and are using. Now you own that, too.

Your Sabatier-reactors (no radiation, don’t freak out) and your RWGS plant begin sucking in the thin Martian atmosphere and making oxygen, methane, and water out of it. You drill a well down to a geothermally-heated aquifer deep beneath your settlement and use that well to generate electrical power, heat your settlement, do cool science with it (look for microbial life!), and very carefully filter it so you can add it to your water supply: all those “resources” now belong to you.

But you’ve made it complicated now. You have drilled a well and have usage rights to that well… does that give you “water rights” to the giant aquifer you tapped? To some degree? You have built so much stuff on a clearly-delineated area: even though you cannot own it like “real estate,” haven't you established a whole blanket of rights to it just as if you’d homesteaded it or staked a mining claim?

You have a launch and landing pad nearby (not too nearby) with radar telemetry around it: you don’t own the rights to the open air above your launch pad because you own the pad, but you can assert those rights because of the way you use that resource: your future neighbor can’t build a bridge right over your launch pad because it would interfere with your ability to use the improved space resource that belongs to you.

Your rude neighbor could be an idiot and set a fragile inflatable dome next to your launch pad, since you can’t point to a property line and say “behind that, fella”, and since it does not physically interfere with your use of your property. You have the right to go on using your preexisting launch facilities and roast his dome. In that way, it isn't a question of property rights but wisdom versus idiocy.

You can see that once people actually begin “harvesting” and “improving” space resources, property laws will mature pretty quickly. They haven't yet … but the fundamental legal regime is clear: Mars “belongs” to everyone—and therefore, in a practical way, to no one.

This post originally appeared on Quora. Click here to view.


More from mental floss studios