CLOSE
iStock
iStock

Your Brain’s Memory Capacity May Be as Big as the World Wide Web

iStock
iStock

In an attempt to understand and measure the brain’s synapses, whose shape and size have remained mysterious to scientists, researchers at the University of Texas, Austin and the Salk Institute worked together to determine that the brain’s memory capacity is much larger than previously understood. The results, published in the journal eLife, estimate that an individual human brain may store as much as a petabyte of information—perhaps 10 times more than previously estimated, and about the equivalent of the World Wide Web.

The study was the first attempt “to reconstruct in three dimensions every single synapse and associated structure in a brain region,” to try to understand “basic synaptic structure and local connectivity among neurons,” Kristen Harris, co-senior author of the study and professor of neuroscience at UT Austin, tells mental_floss.

Synapses communicate signals between neurons. They're formed when the cable-like axon from one neuron connects with a "spine" on a dendrite, a branch-like structure extending from the neural cell body, of another. To better understand the way synaptic storage is measured, consider that a computer’s memory is measured in bits, each of which can have a value of 0 or 1. "In the brain, information is stored in the form of synaptic strength, a measure of how strongly activity in one neuron influences another neuron to which it is connected,” write the authors. “The number of different strengths can be measured in bits. The total storage capacity of the brain therefore depends on both the number of synapses and the number of distinguishable synaptic strengths."

Researchers were able to see these synapses by analyzing thin slices of tissue from the hippocampus—the brain region connected to learning and memory—from three male adult rats using electron microscopy. Then, over several years, they used computer software to reconstruct in 3D every “structural process” and roughly 500 synapses found in a tiny section of brain tissue the size of a single red blood cell.

They identified places where two neurons were connected to each other through two synapses, called "axon-coupled pairs,” which allowed them to estimate new sizes of synapses. What they found were 26 different “bins” of synapses that can store 4.7 bits of information each.

Not only is the diversity of synapses they observed in such a small brain region surprising, the storage capacity of each is “markedly higher than previous suggestions,” write the authors. Prior to this, researchers believed an individual synapse was only capable of storing 1 to 2 bits of information. This suggests we may have underestimated the memory capacity of the brain, which has trillions of synapses, "by an order of magnitude."

According to lead author Terry Sejnowski, in whose lab the study was conducted, "Our new measurements of the brain’s memory capacity increase conservative estimates by a factor of 10 to at least a petabyte, in the same ballpark as the World Wide Web." 

The research provides researchers who study memory and learning with a deeper understanding of the brain’s memory capacity, and a new dataset to work with. “This is just the beginning—a tiny chink in the mysterious armor of the structure and function of synapses in the brain,” Harris says.

nextArticle.image_alt|e
iStock
arrow
music
Stradivarius Violins Get Their Distinctive Sound By Mimicking the Human Voice
iStock
iStock

Italian violinist Francesco Geminiani once wrote that a violin's tone should "rival the most perfect human voice." Nearly three centuries later, scientists have confirmed that some of the world's oldest violins do in fact mimic aspects of the human singing voice, a finding which scientists believe proves "the characteristic brilliance of Stradivari violins."

Using speech analysis software, scientists in Taiwan compared the sound produced by 15 antique instruments with recordings of 16 male and female vocalists singing English vowel sounds, The Guardian reports. They discovered that violins made by Andrea Amati and Antonio Stradivari, the pioneers of the instrument, produce similar "formant features" as the singers. The resonance frequencies were similar between Amati violins and bass and baritone singers, while the higher-frequency tones produced by Stradivari instruments were comparable to tenors and contraltos.

Andrea Amati, born in 1505, was the first known violin maker. His design was improved over 100 years later by Antonio Stradivari, whose instruments now sell for several million dollars. "Some Stradivari violins clearly possess female singing qualities, which may contribute to their perceived sweetness and brilliance," Hwan-Ching Tai, an author of the study, told The Guardian.

Their findings were published in the journal Proceedings of the National Academy of Sciences of the United States of America. A 2013 study by Dr. Joseph Nagyvary, a professor emeritus at Texas A&M University, also pointed to a link between the sounds produced by 250-year-old violins and those of a female soprano singer.

According to Vox, a blind test revealed that professional violinists couldn't reliably tell the difference between old violins like "Strads" and modern ones, with most even expressing a preference for the newer instruments. However, the value of these antique instruments can be chalked up to their rarity and history, and many violinists still swear by their exceptional quality.

[h/t The Guardian]

nextArticle.image_alt|e
Phil Walter, Getty Images
arrow
science
How Michael Jackson's Dancing Defied the Laws of Biomechanics
Phil Walter, Getty Images
Phil Walter, Getty Images

From the time he debuted the moonwalk on broadcast television in 1983, Michael Jackson transcended the label of "dancer." His moves seemed to defy gravity as well as the normal limits of human flexibility and endurance.

Now we have some scientific evidence for that. Three neurosurgeons from the Postgraduate Institute of Medical Education and Research in Chandigarh, India, recently published a short paper in the Journal of Neurosurgery: Spine that examines just how remarkable one of Jackson's signature moves really was.

In the 1988 video for "Smooth Criminal" and subsequent live performances, Jackson is seen taking a break from his constant motion to stand in place and lean 45 degrees forward. Both he and his dancers keep their backs straight. Biomechanically, it's not really possible for a human to do. And even though he had a little help, the neurosurgeons found it to be a pretty impressive feat.

An illustration of Michael Jackson's 'Smooth Criminal' dance move.
Courtesy of 'Journal of Neurosurgery: Spine.' Copyright Manjul Tripathi, MCh.

Study co-author Manjul Tripathi told CNN that humans can't lean forward much more than 25 or 30 degrees before they risk landing on their faces. (He knows, because he tried it.) Normally, bending involves using the hip as a fulcrum, and erector spinae muscles to support our trunk. When Jackson leaned over, he transferred the fulcrum to the ankle, with the calf and Achilles tendon under strain. Since that part of the body is not equipped to support leaning that far forward without bending, the "Smooth Criminal" move was really a biomechanical illusion. The act was made possible by Jackson's patented shoe, which had a "catch" built under the heel that allowed him to grasp a protruding support on the stage. Secured to the floor, he was able to achieve a 45-degree lean without falling over.

But the neurosurgeons are quick to point out that the shoes are only part of the equation. To achieve the full 45-degree lean, Jackson would have had to have significant core strength as well as a strong Achilles tendon. An average person equipped with the shoe would be unable to do the move.

How does this apply to spinal biomechanics research? The authors point out that many dancers inspired by Jackson are continuing to push the limits of what's possible, leading to injury. In one 2010 paper, researchers surveyed 312 hip-hop dancers and found that 232 of them—almost 75 percent of the cohort—reported a total of 738 injuries over a six-month period. That prevalence could mean neurosurgeons are facing increasingly complex or unique spinal issues. The surgeons hope that awareness of potential risks could help mitigate problems down the road.

[h/t CNN]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios