CLOSE
Original image
SXS Collaboration, University of Chicago

Physicists Spot Einstein's Gravitational Waves for the First Time

Original image
SXS Collaboration, University of Chicago

Simulation of two merging black holes in front of the Milky Way. Scientists said the Sept. 14 event was so intense that in the moment before the colliding black holes swallowed each other, they emitted more energy than the rest of the universe combined.

After a decades-long search, physicists have managed to detect ethereal ripples in the very fabric of space, known as gravitational waves—triggered in this case by the death-spiral of a pair of merging black holes—and snared by a sophisticated detector known as LIGO, the Laser Interferometer Gravitational-wave Observatory. The discovery is being described as one of the great physics breakthroughs of the decade, on par with the 2012 discovery of the Higgs boson, and very likely Nobel Prize–worthy.

Lawrence Krauss, a physicist at Arizona State University and author of The Physics of Star Trek, told mental_floss that the discovery “monumental.” The new technology will allow astronomers “to peer into parts of the universe that we’d never could have seen otherwise,” Krauss said. More than that, it will pave the way for a new era in astronomy, one in which gravitational waves will be used to study a wide array of all astrophysical phenomena, many of them never before open to scientific scrutiny. “It’s opened up a whole new window on the universe,” he said—a metaphor that’s been echoed by many of the physicists and astronomers who have been weighing in excitedly on the discovery.

The discovery was unveiled Thursday morning at a packed Washington DC press conference organized by the U.S. National Science Foundation (NSF), which funded the research (with simultaneous presentations by partner institutions in at least four other countries).

The gravitational waves recorded by the LIGO detectors were the result of the violent merger of two black holes, located some 1.3 billion light-years from Earth, explained Gabriela González, a physicist at Louisiana State University and a spokesperson for the LIGO collaboration. One of the black holes was determined to have a mass 29 times that of our Sun, the other was even heavier, with a mass equal to 36 Suns. Although LIGO can only roughly pin down the direction of the signal, González said the black hole pair—now a single black hole, following the cataclysmic merger—is located in the southern sky, roughly in the direction of the Magellanic Clouds, the Milky Way’s small companion galaxies (of course, the black holes are far more distant).

The black hole pair had been locked in mutual orbit for hundreds of millions of years, gradually losing energy through the emission of gravitational waves, and then finally emitting one last “death burst” as the two objects merged into a single entity, González said. “What we saw is from only the last fraction of a second before the merger,” she told mental_floss.

The waves created from that final blast then rippled across the cosmos. After more than a billion years, some of those waves washed silently past Earth on September 14 of last year, where they triggered a tiny “blip” at each of the two identical LIGO detectors (one located in Hanford, Washington, the other in Livingston, Louisiana).

Incredibly, the team of researchers managed to keep the discovery relatively secret for almost six months. When the initial signal was recorded, Caltech physicist Kip Thorne received an e-mail from a colleague. “He said, ‘LIGO may have detected gravitational waves; go and look at this,’” referring Thorne to initial data posted on a private LIGO webpage. “I looked at it, and I said, ‘My god—this may be it!’” Thorne told mental_floss. (Thorne played a key role in the early development of LIGO and is known not only for writing some of the most-read books on gravitational physics, but for his collaboration with Carl Sagan on the book Contact, and with the makers of the smash sci-fi film Interstellar.)

Not everyone was quite so tight-lipped—and in fact rumors had been circulating for weeks leading up to Thursday’s announcement (as mental_floss reported last month). A few people got an early look at the results and couldn’t contain their excitement. McMaster University physicist Clifford Burgess emailed some of the details to colleagues in his department, and the news quickly spilled out via social media. (Burgess described the discovery as “off-the-scale huge.”)

And while there have been a somewhat alarming number of super-hyped physics “discoveries” that failed to pan out in recent years—remember the faster-than-light neutrinos?—the LIGO researchers claim to have ruled out any possible non-gravitational-wave explanation for the signal they recorded. The finding is being published in the peer-reviewed journal Physics Review Letters (the “discovery paper” was released yesterday morning, February 11), along with a series of further papers.

It’s a discovery nearly a quarter-century in the making: LIGO was spearheaded by Caltech and MIT in 1992, and now involves nearly 1000 researchers from the UK, Germany, Australia, and beyond. With a total cost of more than $600 million, LIGO is the largest project ever funded by NSF.

Einstein predicted the existence of gravitational waves, based on his newly developed theory of gravity, known as general relativity, in 1915. Gravitational waves are literally ripples in spacetime, created whenever massive objects throw their weight around—for example, when ultra-dense stars, known as neutron stars, collide, or when a star blows up in a supernova. In fact, any time masses accelerate, gravitational waves are produced—even doing dumbbell-lifts at the gym would produce them—but such waves would be infinitesimally weak, and quite impossible to measure. Even the waves from the black hole merger were so faint that they required the massive LIGO detectors to finally pick them up.

“It’s just really, tremendously exciting,” physicist Clifford Will of the University of Florida, one of the world’s leading authorities on general relativity, told mental_floss. “We’ve just finished celebrating the 100th anniversary of GR [general relativity], so this is icing on the cake.”

David Spergel, a physicist at Princeton, tweeted: “Up to now, we have only seen the universe. Now, for the first time, we can hear," adding, "The universe is playing a beautiful tune and LIGO just heard it.”

Gravitational waves alternately stretch and shrink space, by a tiny amount, as they pass by. Inside each of the LIGO detectors, laser beams bounce back and forth between mirrors attached to weights. A passing gravitational wave causes a slight change in the distance the laser beam travels, which leaves a telltale pattern (known as an interference pattern) in the recorded laser light. (Having two detectors located more than 2000 miles apart helps rule out false-alarm signals that might register at only one site.)

“We saw the same waveform—the same signal—in the two detectors,” González told mental_floss. Recording such signals by chance might happen once in every 200,000 years,” she said.

LIGO went online in 2002, but with only a fraction of its current sensitivity. The detectors were upgraded last fall in an effort known as “Advanced LIGO.” The actual stretching caused by the passing gravitational wave is mind-bogglingly small, causing the detectors to grow or shrink in length by a distance equivalent to just 1/1000th of the width of a proton.

The success of the LIGO detectors is “a wonderful testament to the perseverance and ingenuity of the scientists,” Krauss said. “I never thought I’d see this in my lifetime.”

Astronomers and physicists expect the new technique to reveal the universe in a new light, as the first optical telescopes did when Galileo first used them to study the night sky 400 years ago, and as the first radio telescopes did in the mid-20th century.

Editor's note: This story has been significantly updated to include input from a main LIGO researcher and additional outside experts, as well as with more comprehensive details about the extraordinary find.  

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
quiz
arrow
Name the Author Based on the Character
May 23, 2017
Original image
SECTIONS
BIG QUESTIONS
BIG QUESTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES