CLOSE
Brain Preservation Foundation
Brain Preservation Foundation

Scientists Have Thawed a Cryogenically Preserved Rabbit Brain

Brain Preservation Foundation
Brain Preservation Foundation

After removing a whole rabbit’s brain from cryogenic storage, researchers discovered that its delicate neurons and synapses had been perfectly preserved. The exciting achievement marks the first time a frozen mammalian brain has been recovered in such pristine condition. Not only could these findings help scientists better understand brain diseases, but they may also lay the foundation for one day preserving and retrieving memories stored in the brain.

In a paper recently published in the journal Cryobiology [PDF], the team of researchers from 21st Century Medicine detail how they were able to protect the brain’s fragile structures during the freezing process. They employed a technique called aldehyde-stabilized cryopreservation, which involves suspending the neurons and synapses with strong chemicals before chilling them to -211 °F. The key component in this process is a toxic chemical called glutaraldehyde, which is often used as a powerful disinfectant. The chemical spreads quickly when introduced to the brain, filling up the vascular system and halting tissue decay. The result is a brain that looks the same when it comes out of cryogenic storage as it did when it went in. In theory, the technique could be used to successfully preserve a brain for centuries.

The team was awarded a $26,735 prize from the Brain Preservation Foundation, a nonprofit that first challenged the science community to preserve a whole mammalian brain in long-term storage five years ago. The group from 21st Century Medicine has preserved a pig’s brain as well, but its condition has yet to be examined by the organization.

The ideas that most people associate with cryogenic freezing are still science fiction and largely considered implausible. Still, while these new findings may not be used to prolong the lives of the terminally ill in the future, they could be used to preserve memory. Our brains' synapses grow in size with each new memory we form, so successfully freezing our “connectome” of neurons and synaptic connections would theoretically equate to salvaging the information that makes up memory. The results could also provide scientists with a more detailed way to study brain function, which could eventually lead to a better understanding of Alzheimer’s disease and breakthroughs in artificial intelligence development.

[h/t Popular Science]

nextArticle.image_alt|e
iStock
arrow
science
The Prehistoric Bacteria That Helped Create Our Cells Billions of Years Ago
iStock
iStock

We owe the existence of our cells—the very building blocks of life—to a chance relationship between bacteria that occurred more than 2 billion years ago. Flash back to Bio 101, and you might remember that humans, plants, and animals have complex eukaryotic cells, with nucleus-bound DNA, instead of single-celled prokaryotic cells. These contain specialized organelles such as the mitochondria—the cell’s powerhouse—and the chloroplast, which converts sunlight into sugar in plants.

Mitochondria and chloroplasts both look and behave a lot like bacteria, and they also share similar genes. This isn’t a coincidence: Scientists believe these specialized cell subunits are descendants of free-living prehistoric bacteria that somehow merged together to form one. Over time, they became part of our basic biological units—and you can learn how by watching PBS Eons’s latest video below.

nextArticle.image_alt|e
iStock
arrow
Stones, Bones, and Wrecks
Buckingham Palace Was Built With Jurassic Fossils, Scientists Find
iStock
iStock

The UK's Buckingham Palace is a vestige from another era, and not just because it was built in the early 18th century. According to a new study, the limestone used to construct it is filled with the fossilized remains of microbes from the Jurassic period of 200 million years ago, as The Telegraph reports.

The palace is made of oolitic limestone, which consists of individual balls of carbonate sediment called ooids. The material is strong but lightweight, and is found worldwide. Jurassic oolite has been used to construct numerous famous buildings, from those in the British city of Bath to the Empire State Building and the Pentagon.

A new study from Australian National University published in Scientific Reports found that the spherical ooids in Buckingham Palace's walls are made up of layers and layers of mineralized microbes. Inspired by a mathematical model from the 1970s for predicting the growth of brain tumors, the researchers created a model that explains how ooids are created and predicts the factors that limit their ultimate size.

A hand holding a chunk of oolite limestone
Australian National University

They found that the mineralization of the microbes forms the central core of the ooid, and the layers of sediment that gather around that core feed those microbes until the nutrients can no longer reach the core from the outermost layer.

This contrasts with previous research on how ooids form, which hypothesized that they are the result of sediment gathered from rolling on the ocean floor. It also reshapes how we think about the buildings made out of oolitic limestone from this period. Next time you look up at the Empire State Building or Buckingham Palace, thank the ancient microbes.

[h/t The Telegraph]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios