CLOSE
Original image
iStock

The Uterus: A Natural History

Original image
iStock

The human body is an amazing thing. For each one of us, it’s the most intimate object we know. And yet most of us don’t know enough about it: its features, functions, quirks, and mysteries. That’s why we’re launching a new series called The Body, which will explore human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.
 

At only 3 inches long and weighing about 60 grams, the uterus isn’t a flashy, attention-grabbing organ. When it comes to human health, the heart usually comes first, followed by the brain, then perhaps the digestive system. Yet the uterus plays an outsized role. It’s the carrier of all life, the subject of scrutiny in political forums, and a source of delight and despair for sexually mature women. It causes bleeding and pain, allows 211 million women to get pregnant every year, and is partially responsible for the 10 to 20 percent of those pregnancies that end in miscarriage.

Despite its ability to create life, there are dozens of crucial things we have yet to learn about the uterus. At least we’ve abandoned the theory that it travels freely around the body, causing hysteria, and that it can be manipulated by smelling salts.

Today we know the uterus sits low in the abdomen, held in place by muscles and ligaments. It is connected to the vagina by the cervix and receives unfertilized eggs from the ovaries via the fallopian tubes, which are connected to both sides of the uterus. It expands from 3 inches to the size of a watermelon by the end of a pregnancy in order to hold the baby and placenta—and, luckily for new mothers, naturally deflates about six weeks after the child is born.

But how did we develop this organ, how does it operate—or malfunction—in the body, and what's the outlook for the future?

THE EXTRAORDINARY EVOLUTION OF THE MAMMALIAN UTERUS

Until recently, scientists didn’t even understand how mammals evolved uteruses that allowed for live birth. Soft tissue is rarely preserved in the fossil record, which means scientists can study the bone structure of past organisms but are often left guessing when it comes to organs.

Up until marsupial ancestors appeared 220 million years ago, new life came out of eggs. Before that time, even the earliest mammalian predecessors, the group called monotremes (like echidnas and platypuses) were still laying eggs. But by 105 million years ago, placental mammals had evolved elaborate uteruses that allowed for invasive placentas, maternal tolerance of the fetus, and long gestation periods. What caused this evolution? Why did mammals suddenly appear?

In 2015, a team of researchers from the University of Chicago, Yale, and several other universities found a major clue in the hunt to discover the origin of mammals: genetic parasites. Called transposons, these snippets of non-protein-coding DNA regularly changed positions in the genome, an action called “jumping genes.” The leap-frogging transposons caused genes from other tissues—like the brain and digestive system—to be activated in the uterus. As more and more genes were expressed in the uterus, organisms shifted from producing eggs to giving live birth. The shift began sometime between 325 and 220 million years ago with the appearance of monotremes, and continued for hundreds of millions of years until placental mammals appeared, sometime between 176 and 105 million years ago.

During the genetic shift, more than 1000 genes turned on in therians, common ancestors to marsupials and placental mammals (like us). Many of these genes related to maternal-fetal communication, and especially the suppression of the maternal immune system in the uterus so it didn't reject the developing fetus. Because many of the transposons had progesterone binding sites that regulated the process, the uterus evolved to be extremely sensitive to that hormone (which is produced by the ovaries during the release of a mature egg; it prepares the uterine lining to receive a fertilized egg). The study appeared in the journal Cell Reports. In a press statement, Vincent Lynch, one of the study’s authors, said the discovery shed light on how “something completely novel evolves in nature.”

“It’s easy to imagine how evolution can modify an existing thing, but how new things like pregnancy evolve has been much harder to understand,” Lynch continued. “We now have a new mechanistic explanation of this process that we’ve never had before.”

THE MYSTERIES OF MENSTRUATION

While live birth defines mammals, including everything from whales to dogs to bats, there’s one thing that sets humans apart from most other species: menstruation. We’re part of an exclusive club that’s limited to old world primates, elephant shrews, and fruit bats. All other species remodel and reabsorb the endometrium, or uterine lining. So why do humans have to deal with the hassle of a period? Scientists aren’t quite sure. One theory is that the process protects us from abnormal pregnancies. The human gestation period is so long and requires so many biological resources that it’s better to reject all but the best candidates. And the reason we have periods is far from the only thing we don’t understand about menstruation.

“There is so much we don’t know,” says Hilary Critchley, OB/GYN and professor of reproductive sciences at the University of Edinburgh. “Not only why do we have normal periods, but particularly why does a woman have heavier periods?” Critchley and her colleagues published a paper that compiled years’ worth of studies in Human Reproduction Update in July 2015. They found far more questions than answers. Their research confirmed what is known: that a decline in progesterone triggers menstruation, and that the endometrial coagulation system plays a part in stopping the bleeding. But plenty of questions remain about the mechanics of the process.

Doctors don’t know what regulates inflammation during menstruation, what causes the bleeding to stop, or how the uterus repairs itself so quickly without creating any scar tissue. They also don’t understand the causes of diseases associated with menstruation, like polycystic ovary syndrome and endometriosis. Neither currently has a cure, and they afflict around 1 in 10 women. In the most extreme cases of endometriosis, women have no choice but to undergo hysterectomies.

“If you’re in the workforce, period problems can be really embarrassing and really difficult to deal with. This is where I see the unmet need for new treatments,” Critchley tells mental_floss. “A woman now has 400 periods in a lifetime. A woman (100 years ago) had 40. If you’ve got more periods, you’ve got more opportunity for it to be a problem.” This increase in the number of periods by a factor of 10 in the past 100 years is due to contraception and improved nutrition. The downside is that's a lot more opportunity for menstruation to cause problems.

GROWING AN EXTRA ORGAN TO MAKE A BABY

Menstruation isn’t the only area of female reproductive health that has researchers scratching their heads. Perhaps even more confounding is the placenta, a transient organ created during pregnancy by the embryo.

“I’d say the placenta is probably the least studied and the least understood organ in the body,” says Catherine Spong, acting director of the National Institute of Child and Human Development. She oversees the Human Placenta Project (HPP), which aims to develop new tools to monitor the placenta throughout its development. “If you could understand how the placenta allows two genetically distinct entities not only to grow, but also thrive, the implications for enhancing our understanding of immunology and transplant medicine would be pretty remarkable.”

Stacy Zamudio, a recipient of a grant from the HPP and director of research at Hackensack University Medical Center, calls the placenta “the most wonderful organ ever.” Her research focuses on placenta accreta (when the placenta grows too deeply into the mother’s uterine wall and even outside organs).

“It breathes, it produces hormones, it produces immunologic factors that protect the baby against infection. It acts like a skin, a liver, a kidney, a lung—it does all the functions of the other organs in one organ,” Zamudio says.

Human Placenta Project

The placenta achieves this by hooking into arteries in the uterus, essentially hijacking the mother’s body so the embryo can have a constant stream of nutrients and oxygen as it develops. When it’s functioning normally, the placenta ensures a positive outcome: healthy baby, healthy mother. But when things go wrong with the placenta, they quickly go from bad to worse.

The placenta can be under-invasive, meaning the connection to the mother’s blood isn’t strong enough. The baby stops developing because it’s not getting nutrients, and in the worst cases the mother can suffer from preeclampsia, which causes life-threateningly high blood pressure and can only be treated by immediate delivery of the baby. Or, as with the cases Zamudio studies, the placenta can be over-invasive, infiltrating the uterus and other organs beyond it like a cancer. Finally, in a complication known as placental abruption, the placenta can peel away from the uterus before delivery, removing the baby’s source of oxygen and nutrients and causing heavy bleeding in the mother.

Pregnancy can be a dangerous balancing act, and if doctors had better ways of monitoring the placenta’s development over the course of pregnancy, they might be able to prevent or avert the worst outcomes.

FROM WOMB TRANSPLANTS TO TRICORDERS

In October 2014, a baby born to a Swedish couple became an exciting example of the possible future of maternity—he was the first child ever born of a transplanted uterus. (The first pregnancy from a womb transplant, in Turkey, was terminated in 2013 when the fetus had no heartbeat.) The 36-year-old mother, who was herself born without a uterus, received a donation from a woman in her 60s, and had a frozen embryo successfully implanted in the transplanted organ. Although the child was born prematurely, he and the mother were otherwise healthy after the pregnancy. Since then, four more women who received uterus transplants from doctors at the University of Gothenburg have gotten pregnant. 

The pioneering surgery is now spreading across the world. Doctors at Cleveland Clinic performed the first successful uterus transplant in the U.S. just last week. The 9-hour surgery was performed on a 26-year-old patient with uterine factor infertility (an irreversible condition affecting 3 to 5 percent of women that prevents pregnancy). If the patient heals and can become pregnant, the surgery could offer new hope to women who previously thought they were doomed to infertility.

Despite the enormous advances made in the last decades concerning women's health, many questions about the uterus remain unanswered. Scientists don’t know why the placenta sometimes grows too little or too much, or how it communicates with the rest of the organs in the mother’s body. They don’t know why some women have debilitating cramps during their periods that have been likened to the pain of having a heart attack. But with scientists around the globe investing time and resources into such questions, it might not be long before we have real answers and solutions to these problems.

"We're not that far away from the tricorder in Star Trek," Zamudio says, referring to developing technologies like nanomagnetics. "I'm hoping that I'll be alive long enough to see a doctor be able to wave the instrument over the woman's abdomen and tell me what the glucose level is in that body."

Original image
iStock
arrow
Health
8 Potential Signs of a Panic Attack
Original image
iStock

It's not just fear or worry. In fact, many panic attacks don’t look like panic at all. Panic attacks come on rapidly, and often at times that don't seem to make sense. The symptoms of panic disorder vary from person to person and even from attack to attack for the same person. The problems listed below are not unique to panic attacks, but if you're experiencing more than one, it's a good idea to talk to your doctor either way.

1. YOU'RE DIZZY.

Doctors sometimes call the autonomic nervous system (ANS) the "automatic nervous system" because it regulates many vital bodily functions like pumping blood all on its own, without our having to think about it. Panic attacks often manifest through the ANS, leading to increased heart rate or decreased blood pressure, which can in turn lead to feeling lightheaded or faint.

2. YOU'RE LOSING YOURSELF.

Feeling detached from yourself is called depersonalization. Feeling detached from the world, or like it's fake or somehow unreal, is called derealization. Both forms of dissociation are unsettling but common signs that a panic attack has begun.

3. YOU'RE QUEASY.

Our digestive system is often the first body part to realize that something is wrong. Panic sends stress hormones and tension to the gut and disrupts digestion, causing nausea, upset stomach, or heartburn.

4. YOU FEEL NUMB OR TINGLY.

Panic attacks can manifest in truly surprising ways, including pins and needles or numbness in a person's hands or face.

5. YOU'RE SWEATY OR SHIVERING.

The symptoms of a panic attack can look a lot like the flu. But if you don't have a fever and no one else has chattering teeth, it might be your ANS in distress.

6. YOU KNOW THE WORST IS COMING.

While it may sound prophetic or at least bizarre, a sense of impending doom is a very common symptom of panic attacks (and several other conditions). 

7. BREATHING IS DIFFICULT.

The ANS strikes again. In addition to the well-known problems of hyperventilation or shortness of breath, panic attacks can also cause dyspnea, in which a person feels like they can't fill their lungs, and feelings of choking or being smothered.

8. YOU'RE AFRAID OF HAVING A PANIC ATTACK. 

Oddly enough, anxiety about anxiety is itself a symptom of anxiety and panic attacks. Fear of losing control or getting upset can cause people to avoid situations that could be triggering, which can in turn limit their lives. 

Original image
iStock
arrow
science
2017 Ig Nobel Prizes Celebrate Research on How Crocodiles Affect Gambling and Other Odd Studies
Original image
iStock

The Ig Nobel Prizes are back, and this year's winning selection of odd scientific research topics is as weird as ever. As The Guardian reports, the 27th annual awards of highly improbable studies "that first make people laugh, then make them think" were handed out on September 14 at a theater at Harvard University. The awards, sponsored by the Annals of Improbable Research, honor research you never would have thought someone would take the time (or the funding) to study, much less would be published.

The 2017 highlights include a study on whether cats can be both a liquid and a solid at the same time and one on whether the presence of a live crocodile can impact the behavior of gamblers. Below, we present the winners from each of the 10 categories, each weirder and more delightful than the last.

PHYSICS

"For using fluid dynamics to probe the question 'Can a Cat Be Both a Solid and a Liquid?'"

Winner: Marc-Antoine Fardin

Study: "On the Rheology of Cats," published in Rheology Bulletin [PDF]

ECONOMICS

"For their experiments to see how contact with a live crocodile affects a person's willingness to gamble."

Winners: Matthew J. Rockloff and Nancy Greer

Study: "Never Smile at a Crocodile: Betting on Electronic Gaming Machines is Intensified by Reptile-Induced Arousal," published in the Journal of Gambling Studies

ANATOMY

"For his medical research study 'Why Do Old Men Have Big Ears?'"

Winner: James A. Heathcote

Study: "Why Do Old Men Have Big Ears?" published in the BMJ

BIOLOGY

"For their discovery of a female penis, and a male vagina, in a cave insect."

Winners: Kazunori Yoshizawa, Rodrigo L. Ferreira, Yoshitaka Kamimura, and Charles Lienhard (who delivered their acceptance speech via video from inside a cave)

Study: "Female Penis, Male Vagina and Their Correlated Evolution in a Cave Insect," published in Current Biology

FLUID DYNAMICS

"For studying the dynamics of liquid-sloshing, to learn what happens when a person walks backwards while carrying a cup of coffee."

Winner: Jiwon Han

Study: "A Study on the Coffee Spilling Phenomena in the Low Impulse Regime," published in Achievements in the Life Sciences

NUTRITION

"For the first scientific report of human blood in the diet of the hairy-legged vampire bat."

Winners: Fernanda Ito, Enrico Bernard, and Rodrigo A. Torres

Study: "What is for Dinner? First Report of Human Blood in the Diet of the Hairy-Legged Vampire Bat Diphylla ecaudata," published in Acta Chiropterologica

MEDICINE

"For using advanced brain-scanning technology to measure the extent to which some people are disgusted by cheese."

Winners: Jean-Pierre Royet, David Meunier, Nicolas Torquet, Anne-Marie Mouly, and Tao Jiang

Study: "The Neural Bases of Disgust for Cheese: An fMRI Study," published in Frontiers in Human Neuroscience

COGNITION

"For demonstrating that many identical twins cannot tell themselves apart visually."

Winners: Matteo Martini, Ilaria Bufalari, Maria Antonietta Stazi, and Salvatore Maria Aglioti

Study: "Is That Me or My Twin? Lack of Self-Face Recognition Advantage in Identical Twins," published in PLOS One

OBSTETRICS

"For showing that a developing human fetus responds more strongly to music that is played electromechanically inside the mother's vagina than to music that is played electromechanically on the mother's belly."

Winners: Marisa López-Teijón, Álex García-Faura, Alberto Prats-Galino, and Luis Pallarés Aniorte

Study: "Fetal Facial Expression in Response to Intravaginal Music Emission,” published in Ultrasound

PEACE PRIZE

"For demonstrating that regular playing of a didgeridoo is an effective treatment for obstructive sleep apnoea and snoring."

Winners: Milo A. Puhan, Alex Suarez, Christian Lo Cascio, Alfred Zahn, Markus Heitz, and Otto Braendli

Study: "Didgeridoo Playing as Alternative Treatment for Obstructive Sleep Apnoea Syndrome: Randomised Controlled Trial," published by the BMJ

Congratulations, all.

[h/t The Guardian]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios