CLOSE
Getty Images
Getty Images

15 Gripping Facts About Galileo

Getty Images
Getty Images

Albert Einstein once said that the work of Galileo Galilei “marks the real beginning of physics.” And astronomy, too: Galileo was the first to aim a telescope at the night sky, and his discoveries changed our picture of the cosmos. Here are 15 things that you might not know about the father of modern science.

1. THERE'S A REASON WHY GALILEO'S FIRST NAME ECHOES HIS LAST NAME.

You may have noticed that Galileo’s given name is a virtual carbon-copy of his family name. In her book Galileo’s Daughter, Dava Sobel explains that in Galileo’s native Tuscany, it was customary to give the first-born son a Christian name based on the family name (in this case, Galilei). Over the years, the first name won out, and we’ve come to remember the scientist simply as “Galileo.”

2. HE PROBABLY NEVER DROPPED ANYTHING OFF THE LEANING TOWER OF PISA.

With its convenient “tilt,” the famous tower in Pisa, where Galileo spent the early part of his career, would have been the perfect place to test his theories of motion, and of falling bodies in particular. Did Galileo drop objects of different weights, to see which would strike the ground first? Unfortunately, we have only one written account of Galileo performing such an experiment, written many years later. Historians suspect that if Galileo taken part in such a grand spectacle, there would be more documentation. (However, physicist Steve Shore did perform the experiment at the tower in 2009; I videotaped it and put the results on YouTube.)

3. HE TAUGHT HIS STUDENTS HOW TO CAST HOROSCOPES.

It’s awkward to think of the father of modern science mucking about with astrology. But we should keep two things in mind: First, as historians remind us, it’s problematic to judge past events by today’s standards. Sure, we know that astrology is bunk, but in Galileo’s time, astrology was only just beginning to disentangle from astronomy. Besides, Galileo wasn’t rich: A professor who could teach astrological methods would be in greater demand than one who couldn’t.

4. HE DIDN'T LIKE BEING TOLD WHAT TO DO.

OK, maybe you already knew that, based on his eventual kerfuffle with the Roman Catholic Church. But even as a young professor at the University of Pisa, Galileo had a reputation for rocking the boat. The university’s rules demanded that he wear his formal robes at all times. He refused; he thought it was pretentious and considered the bulky gown a nuisance. So the university docked his pay.

5. GALILEO DIDN'T INVENT THE TELESCOPE.

In fact, we’re not sure who did, although a Dutch spectacle-maker named Hans Lipperhey often gets the credit (we know that he applied for a patent in the fall of 1608). Within a year, Galileo had got hold of one of these Dutch instruments and quickly improved the design. Soon, he had a telescope that could magnify 20 or even 30 times. As historian of science Owen Gingerich has put it, Galileo had managed “to turn a popular carnival toy into a scientific instrument.”

6. HE GOT LEANED ON BY A KING TO NAME PLANETS AFTER HIM.

Galileo rose to fame in 1610 after discovering, among other things, that the planet Jupiter is accompanied by four little moons, never previously observed (and invisible without telescopic aid). Galileo dubbed them the “Medicean stars” after his patron, Cosimo II of the Medici family, who ruled over Tuscany. The news spread quickly; soon the king of France was asking Galileo if he might discover some more worlds and name them after him.

7. HE DIDN’T HAVE TROUBLE WITH THE CHURCH FOR THE FIRST TWO-THIRDS OF HIS LIFE.

In fact, the Vatican was keen on acquiring astronomical knowledge, because such data was vital for working out the dates of Easter and other holidays. In 1611, when Galileo visited Rome to show off his telescope to the Jesuit astronomers there, he was welcomed with open arms. The future Pope Urban VIII had one of Galileo’s essays read to him over dinner and even wrote a poem in praise of the scientist. It was only later, when a few disgruntled conservative professors began to speak out against Galileo, that things started to go downhill. It got even worse in 1616, when the Vatican officially denounced the heliocentric (sun-centered) system described by Copernicus, which all of Galileo’s observations seemed to support. And yet, the problem wasn’t Copernicanism as such. More vexing was the notion of a moving Earth, which seemed to contradict certain verses in the Bible.

8. GALILEO PROBABLY COULD HAVE EARNED A LIVING AS AN ARTIST.

We think of Galileo as a scientist, but his interests—and talents—straddled several disciplines. Galileo could draw and paint as well as many of his countrymen and was a master of perspective—a skill that no doubt helped him interpret the sights revealed by his telescope. His drawings of the moon are particularly striking. As the art professor Samuel Edgerton has put it, Galileo’s work shows “the deft brushstrokes of a practiced watercolorist”; his images have “an attractive, soft, and luminescent quality.” Edgerton writes of Galileo’s “almost impressionistic technique” more than 250 years before impressionism became, as they say, a thing.

9. HE WROTE ABOUT RELATIVITY LONG BEFORE EINSTEIN.

He didn’t write about exactly the same sort of relativity that Einstein did. But Galileo understood very clearly that motion is relative—that is, that your perception of motion has to do with your own movement as well as that of the object you’re looking at. In fact, if you were locked inside a windowless cabin on a ship, you’d have no way of knowing if the ship was motionless, or moving at a steady speed. More than 250 years later, these ideas would be fodder for the mind of the young Einstein.

10. HE NEVER MARRIED, BUT THAT DOESN'T MEAN HE WAS ALONE.

Galileo was very close with a beautiful woman from Venice named Marina Gamba; together, they had two daughters and a son. And yet, they never married, nor even shared a home. Why not? As Dava Sobel notes, it was traditional for scholars in those days to remain single; perceived class difference may also have played a role.

11. YOU CAN LISTEN TO MUSIC COMPOSED BY GALILEO'S DAD.

Galileo’s father, Vincenzo, was a professional musician and music teacher. Several of his compositions have survived, and you can find modern recordings of them on CD (like this one). The young Galileo learned to play the lute by his father’s side; in time he became an accomplished musician in his own right. His music sense may have aided in his scientific work; with no precision clocks, Galileo was still able to time rolling and falling objects to within mere fractions of a second.

12. HIS DISCOVERIES MAY HAVE INFLUENCED A SCENE IN ONE OF SHAKESPEARE'S LATE PLAYS.

An amusing point of trivia is that Galileo and Shakespeare were born in the same year (1564). By the time Galileo aimed his telescope at the night sky, however, the English playwright was nearing the end of his career. But he wasn’t quite ready to put down the quill: His late play Cymbeline contains what may be an allusion to one of Galileo’s greatest discoveries—the four moons circling Jupiter. In the play’s final act, the god Jupiter descends from the heavens, and four ghosts dance around him in a circle. It could be a coincidence … or, as I suggest in my book The Science of Shakespeare, it could hint at the Bard's awareness of one of the great scientific discoveries of the time.

13. GALILEO HAD SOME BIG-NAME VISITORS WHILE UNDER HOUSE ARREST.

Charged with “vehement suspicion of heresy,” Galileo spent the final eight years of his life under house arrest in his villa outside of Florence. But he was able to keep writing and, apparently, to receive visitors, among them two famous Englishmen: the poet John Milton and the philosopher Thomas Hobbes.

14. HIS BONES HAVE NOT RESTED IN PEACE.

When Galileo died in 1642, the Vatican refused to allow his remains to be buried alongside family members in Florence’s Santa Croce Basilica; instead, his bones were relegated to a side chapel. A century later, however, his reputation had improved, and his remains (minus a few fingers) were transferred to their present location, beneath a grand tomb in the basilica’s main chapel. Michelangelo is nearby.

15. GALILEO MIGHT NOT HAVE BEEN THRILLED WITH THE VATICAN'S 1992 "APOLOGY."

In 1992, under Pope John Paul II, the Vatican issued an official statement admitting that it was wrong to have persecuted Galileo. But the statement seemed to place most of the blame on the clerks and theological advisers who worked on Galileo’s case—and not on Pope Urban VIII, who presided over the trial. Nor was the charge of heresy overturned.

Additional sources:The Discoveries and Opinions of Galileo; Galileo's Daughter; The Cambridge Companion to Galileo.

All images courtesy of Getty Images.

nextArticle.image_alt|e
Penn Vet Working Dog Center
arrow
Stones, Bones, and Wrecks
New Program Trains Dogs to Sniff Out Art Smugglers
Penn Vet Working Dog Center
Penn Vet Working Dog Center

Soon, the dogs you see sniffing out contraband at airports may not be searching for drugs or smuggled Spanish ham. They might be looking for stolen treasures.

K-9 Artifact Finders, a new collaboration between New Hampshire-based cultural heritage law firm Red Arch and the University of Pennsylvania, is training dogs to root out stolen antiquities looted from archaeological sites and museums. The dogs would be stopping them at borders before the items can be sold elsewhere on the black market.

The illegal antiquities trade nets more than $3 billion per year around the world, and trafficking hits countries dealing with ongoing conflict, like Syria and Iraq today, particularly hard. By one estimate, around half a million artifacts were stolen from museums and archaeological sites throughout Iraq between 2003 and 2005 alone. (Famously, the craft-supply chain Hobby Lobby was fined $3 million in 2017 for buying thousands of ancient artifacts looted from Iraq.) In Syria, the Islamic State has been known to loot and sell ancient artifacts including statues, jewelry, and art to fund its operations.

But the problem spans across the world. Between 2007 and 2016, U.S. Customs and Border Control discovered more than 7800 cultural artifacts in the U.S. looted from 30 different countries.

A yellow Lab sniffs a metal cage designed to train dogs on scent detection.
Penn Vet Working Dog Center

K-9 Artifact Finders is the brainchild of Rick St. Hilaire, the executive director of Red Arch. His non-profit firm researches cultural heritage property law and preservation policy, including studying archaeological site looting and antiquities trafficking. Back in 2015, St. Hilaire was reading an article about a working dog trained to sniff out electronics that was able to find USB drives, SD cards, and other data storage devices. He wondered, if dogs could be trained to identify the scents of inorganic materials that make up electronics, could they be trained to sniff out ancient pottery?

To find out, St. Hilaire tells Mental Floss, he contacted the Penn Vet Working Dog Center, a research and training center for detection dogs. In December 2017, Red Arch, the Working Dog Center, and the Penn Museum (which is providing the artifacts to train the dogs) launched K-9 Artifact Finders, and in late January 2018, the five dogs selected for the project began their training, starting with learning the distinct smell of ancient pottery.

“Our theory is, it is a porous material that’s going to have a lot more odor than, say, a metal,” says Cindy Otto, the executive director of the Penn Vet Working Dog Center and the project’s principal investigator.

As you might imagine, museum curators may not be keen on exposing fragile ancient materials to four Labrador retrievers and a German shepherd, and the Working Dog Center didn’t want to take any risks with the Penn Museum’s priceless artifacts. So instead of letting the dogs have free rein to sniff the materials themselves, the project is using cotton balls. The researchers seal the artifacts (broken shards of Syrian pottery) in airtight bags with a cotton ball for 72 hours, then ask the dogs to find the cotton balls in the lab. They’re being trained to disregard the smell of the cotton ball itself, the smell of the bag it was stored in, and ideally, the smell of modern-day pottery, eventually being able to zero in on the smell that distinguishes ancient pottery specifically.

A dog looks out over the metal "pinhweel" training mechanism.
Penn Vet Working Dog Center

“The dogs are responding well,” Otto tells Mental Floss, explaining that the training program is at the stage of "exposing them to the odor and having them recognize it.”

The dogs involved in the project were chosen for their calm-but-curious demeanors and sensitive noses (one also works as a drug-detection dog when she’s not training on pottery). They had to be motivated enough to want to hunt down the cotton balls, but not aggressive or easily distracted.

Right now, the dogs train three days a week, and will continue to work on their pottery-detection skills for the first stage of the project, which the researchers expect will last for the next nine months. Depending on how the first phase of the training goes, the researchers hope to be able to then take the dogs out into the field to see if they can find the odor of ancient pottery in real-life situations, like in suitcases, rather than in a laboratory setting. Eventually, they also hope to train the dogs on other types of objects, and perhaps even pinpoint the chemical signatures that make artifacts smell distinct.

Pottery-sniffing dogs won’t be showing up at airport customs or on shipping docks soon, but one day, they could be as common as drug-sniffing canines. If dogs can detect low blood sugar or find a tiny USB drive hidden in a house, surely they can figure out if you’re smuggling a sculpture made thousands of years ago in your suitcase.

nextArticle.image_alt|e
iStock
arrow
Medicine
New Cancer-Fighting Nanobots Can Track Down Tumors and Cut Off Their Blood Supply
iStock
iStock

Scientists have developed a new way to cut off the blood flow to cancerous tumors, causing them to eventually shrivel up and die. As Business Insider reports, the new treatment uses a design inspired by origami to infiltrate crucial blood vessels while leaving the rest of the body unharmed.

A team of molecular chemists from Arizona State University and the Chinese Academy of Sciences describe their method in the journal Nature Biotechnology. First, they constructed robots that are 1000 times smaller than a human hair from strands of DNA. These tiny devices contain enzymes called thrombin that encourage blood clotting, and they're rolled up tightly enough to keep the substance contained.

Next, researchers injected the robots into the bloodstreams of mice and small pigs sick with different types of cancer. The DNA sought the tumor in the body while leaving healthy cells alone. The robot knew when it reached the tumor and responded by unfurling and releasing the thrombin into the blood vessel that fed it. A clot started to form, eventually blocking off the tumor's blood supply and causing the cancerous tissues to die.

The treatment has been tested on dozen of animals with breast, lung, skin, and ovarian cancers. In mice, the average life expectancy doubled, and in three of the skin cancer cases tumors regressed completely.

Researchers are optimistic about the therapy's effectiveness on cancers throughout the body. There's not much variation between the blood vessels that supply tumors, whether they're in an ovary in or a prostate. So if triggering a blood clot causes one type of tumor to waste away, the same method holds promise for other cancers.

But before the scientists think too far ahead, they'll need to test the treatments on human patients. Nanobots have been an appealing cancer-fighting option to researchers for years. If effective, the machines can target cancer at the microscopic level without causing harm to healthy cells. But if something goes wrong, the bots could end up attacking the wrong tissue and leave the patient worse off. Study co-author Hao Yan believes this latest method may be the one that gets it right. He said in a statement, "I think we are much closer to real, practical medical applications of the technology."

[h/t Business Insider]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios