15 Gripping Facts About Galileo

Getty Images
Getty Images

Albert Einstein once said that the work of Galileo Galilei “marks the real beginning of physics.” And astronomy, too: Galileo was the first to aim a telescope at the night sky, and his discoveries changed our picture of the cosmos. Here are 15 things that you might not know about the father of modern science, who was born February 15, 1564.

1. There's a reason why Galileo Galilei's first name echoes his last name.

You may have noticed that Galileo Galilei’s given name is a virtual carbon-copy of his family name. In her book Galileo’s Daughter, Dava Sobel explains that in Galileo’s native Tuscany, it was customary to give the first-born son a Christian name based on the family name (in this case, Galilei). Over the years, the first name won out, and we’ve come to remember the scientist simply as “Galileo.”

2. Galileo Galilei probably never dropped anything off the leaning tower of Pisa. 

With its convenient “tilt,” the famous tower in Pisa, where Galileo spent the early part of his career, would have been the perfect place to test his theories of motion, and of falling bodies in particular. Did Galileo drop objects of different weights, to see which would strike the ground first? Unfortunately, we have only one written account of Galileo performing such an experiment, written many years later. Historians suspect that if Galileo taken part in such a grand spectacle, there would be more documentation. (However, physicist Steve Shore did perform the experiment at the tower in 2009; I videotaped it and put the results on YouTube.)

3. Galileo taught his students how to cast horoscopes.

It’s awkward to think of the father of modern science mucking about with astrology. But we should keep two things in mind: First, as historians remind us, it’s problematic to judge past events by today’s standards. We know that astrology is bunk, but in Galileo’s time, astrology was only just beginning to disentangle from astronomy. Besides, Galileo wasn’t rich: A professor who could teach astrological methods would be in greater demand than one who couldn’t.

4. Galileo didn't like being told what to do.

Maybe you already knew that, based on his eventual kerfuffle with the Roman Catholic Church. But even as a young professor at the University of Pisa, Galileo had a reputation for rocking the boat. The university’s rules demanded that he wear his formal robes at all times. He refused—he thought it was pretentious and considered the bulky gown a nuisance. So the university docked his pay.

5. Galileo Galilei didn't invent the telescope.

We’re not sure who did, although a Dutch spectacle-maker named Hans Lipperhey often gets the credit (he applied for a patent in the fall of 1608). Within a year, Galileo Galilei obtained one of these Dutch instruments and quickly improved the design. Soon, he had a telescope that could magnify 20 or even 30 times. As historian of science Owen Gingerich has put it, Galileo had managed “to turn a popular carnival toy into a scientific instrument.”

6. A king leaned on Galileo to name planets after him.

Galileo rose to fame in 1610 after discovering, among other things, that the planet Jupiter is accompanied by four little moons, never previously observed (and invisible without telescopic aid). Galileo dubbed them the “Medicean stars” after his patron, Cosimo II of the Medici family, who ruled over Tuscany. The news spread quickly; soon the king of France was asking Galileo if he might discover some more worlds and name them after him.

7. Galileo didn't have trouble with the church for the first two-thirds of his life.

In fact, the Vatican was keen on acquiring astronomical knowledge, because such data was vital for working out the dates of Easter and other holidays. In 1611, when Galileo visited Rome to show off his telescope to the Jesuit astronomers there, he was welcomed with open arms. The future Pope Urban VIII had one of Galileo’s essays read to him over dinner and even wrote a poem in praise of the scientist. It was only later, when a few disgruntled conservative professors began to speak out against Galileo, that things started to go downhill. It got even worse in 1616, when the Vatican officially denounced the heliocentric (sun-centered) system described by Copernicus, which all of Galileo’s observations seemed to support. And yet, the problem wasn’t Copernicanism. More vexing was the notion of a moving Earth, which seemed to contradict certain verses in the Bible.

8. Galileo probably could have earned a living as an artist.

We think of Galileo as a scientist, but his interests—and talents—straddled several disciplines. Galileo could draw and paint as well as many of his countrymen and was a master of perspective—a skill that no doubt helped him interpret the sights revealed by his telescope. His drawings of the Moon are particularly striking. As the art professor Samuel Edgerton has put it, Galileo’s work shows “the deft brushstrokes of a practiced watercolorist”; his images have “an attractive, soft, and luminescent quality.” Edgerton writes of Galileo’s “almost impressionistic technique” more than 250 years before Impressionism developed.

10. Galileo wrote about relativity long before Einstein.

He didn’t write about exactly the same sort of relativity that Einstein did. But Galileo understood very clearly that motion is relative—that is, that your perception of motion has to do with your own movement as well as that of the object you’re looking at. In fact, if you were locked inside a windowless cabin on a ship, you’d have no way of knowing if the ship was motionless, or moving at a steady speed. More than 250 years later, these ideas would be fodder for the mind of the young Einstein.

10. Galileo never married, but that doesn't mean he was alone.

Galileo was very close with a beautiful woman from Venice named Marina Gamba; together, they had two daughters and a son. And yet, they never married, nor even shared a home. Why not? As Dava Sobel notes, it was traditional for scholars in those days to remain single; perceived class difference may also have played a role.

11. You can listen to music composed by Galileo's dad.

Galileo’s father, Vincenzo, was a professional musician and music teacher. Several of his compositions have survived, and you can find modern recordings of them on CD (like this one). The young Galileo learned to play the lute by his father’s side; in time he became an accomplished musician in his own right. His music sense may have aided in his scientific work. With no precision clocks, Galileo was still able to time rolling and falling objects to within mere fractions of a second.

12. His discoveries may have influenced a scene in one of Shakespeare's late plays.

An amusing point of trivia is that Galileo and Shakespeare were born in the same year (1564). By the time Galileo aimed his telescope at the night sky, however, the English playwright was nearing the end of his career. But he wasn’t quite ready to put down the quill: His late play Cymbeline contains what may be an allusion to one of Galileo’s greatest discoveries—the four moons circling Jupiter. In the play’s final act, the god Jupiter descends from the heavens, and four ghosts dance around him in a circle. It could be a coincidence—or, as I suggest in my book The Science of Shakespeare, it could hint at the Bard's awareness of one of the great scientific discoveries of the time.

13. Galileo had some big-name visitors while under house arrest.

Charged with “vehement suspicion of heresy,” Galileo spent the final eight years of his life under house arrest in his villa outside of Florence. But he was able to keep writing and, apparently, to receive visitors, among them two famous Englishmen: the poet John Milton and the philosopher Thomas Hobbes.

14. Galileo's bones have not rested in peace.

When Galileo died in 1642, the Vatican refused to allow his remains to be buried alongside family members in Florence’s Santa Croce Basilica; instead, his bones were relegated to a side chapel. A century later, however, his reputation had improved, and his remains (minus a few fingers) were transferred to their present location, beneath a grand tomb in the basilica’s main chapel. Michelangelo is nearby.

15. Galileo might not have been thrilled with the Vatican's 1992 "apology."

In 1992, under Pope John Paul II, the Vatican issued an official statement admitting that it was wrong to have persecuted Galileo. But the statement seemed to place most of the blame on the clerks and theological advisers who worked on Galileo’s case—and not on Pope Urban VIII, who presided over the trial. Nor was the charge of heresy overturned.

Additional sources: The Discoveries and Opinions of Galileo; Galileo's Daughter; The Cambridge Companion to Galileo.

12 Intriguing Facts About the Intestines

When we talk about the belly, gut, or bowels, what we're really talking about are the intestines—long, hollow, coiled tubes that comprise a major part of the digestive tract, running from the stomach to the anus. The intestines begin with the small intestine, divided into three parts whimsically named the duodenum, jejunum, and ileum, which absorb most of the nutrients from what we eat and drink. Food then moves into the large intestine, or colon, which absorbs water from the digested food and expels it into the rectum. That's when sensitive nerves in your rectum create the sensation of needing to poop.

These organs can be the source of intestinal pain, such as in irritable bowel syndrome, but they can also support microbes that are beneficial to your overall health. Here are some more facts about your intestines.

1. The intestines were named by medieval anatomists.

Medieval anatomists had a pretty good understanding of the physiology of the gut, and are the ones who gave the intestinal sections their names, which are still used today in modern anatomy. When they weren't moralizing about the organs, they got metaphorical about them. In 1535, the Spanish doctor Andrés Laguna noted that because the intestines "carry the chyle and all the excrement through the entire region of the stomach as if through the Ocean Sea," they could be likened to "those tall ships which as soon as they have crossed the ocean come to Rouen with their cargoes on their way to Paris but transfer their cargoes at Rouen into small boats for the last stage of the journey up the Seine."

2. Leonardo da Vinci believed the intestines helped you breathe.

Leonardo mistakenly believed the digestive system aided respiratory function. In 1490, he wrote in his unpublished notebooks, "The compressed intestines with the condensed air which is generated in them, thrust the diaphragm upwards; the diaphragm compresses the lungs and expresses the air." While that isn't anatomically accurate, it is true that the opening of the lungs is helped by the relaxation of stomach muscles, which does draw down the diaphragm.

3. Your intestines could cover two tennis courts ...

Your intestines take up a whole lot of square footage inside you. "The surface area of the intestines, if laid out flat, would cover two tennis courts," Colby Zaph, a professor of immunology in the department of biochemistry and molecular biology at Melbourne's Monash University, tells Mental Floss. The small intestine alone is about 20 feet long, and the large intestine about 5 feet long.

4. ... and they're pretty athletic.

The process of moving food through your intestines requires a wave-like pattern of muscular action, known as peristalsis, which you can see in action during surgery in this YouTube video.

5. Your intestines can fold like a telescope—but that's not something you want to happen.

Intussusception is the name of a condition where a part of your intestine folds in on itself, usually between the lower part of the small intestine and the beginning of the large intestine. It often presents as severe intestinal pain and requires immediate medical attention. It's very rare, and in children may be related to a viral infection. In adults, it's more commonly a symptom of an abnormal growth or polyp.

6. Intestines are very discriminating.

"The intestines have to discriminate between good things—food, water, vitamins, good bacteria—and bad things, such as infectious organisms like viruses, parasites and bad bacteria," Zaph says. Researchers don't entirely know how the intestines do this. Zaph says that while your intestines are designed to keep dangerous bacteria contained, infectious microbes can sometimes penetrate your immune system through your intestines.

7. The small intestine is covered in "fingers" ...

The lining of the small intestine is blanketed in tiny finger-like protrusions known as villi. These villi are then covered in even tinier protrusions called microvilli, which help capture food particles to absorb nutrients, and move food on to the large intestine.

8. ... And you can't live without it.

Your small intestine "is the sole point of food and water absorption," Zaph says. Without it, "you'd have to be fed through the blood."

9. The intestines house your microbiome. 

The microbiome is made up of all kinds of microorganisms, including bacteria, viruses, fungi, and protozoans, "and probably used to include worm parasites too," says Zaph. So in a way, he adds, "we are constantly infected with something, but it [can be] helpful, not harmful."

10. Intestines are sensitive to change.

Zaph says that many factors change the composition of the microbiome, including antibiotics, foods we eat, stress, and infections. But in general, most people's microbiomes return to a stable state after these events. "The microbiome composition is different between people and affected by diseases. But we still don't know whether the different microbiomes cause disease, or are a result in the development of disease," he says.

11. Transferring bacteria from one gut to another can transfer disease—or maybe cure it.

"Studies in mice show that transplanting microbes from obese mice can transfer obesity to thin mice," Zaph says. But transplanting microbes from healthy people into sick people can be a powerful treatment for some intestinal infections, like that of the bacteria Clostridium difficile, he adds. Research is pouring out on how the microbiome affects various diseases, including multiple sclerosis, Parkinson's, and even autism.

12. The microbes in your intestines might influence how you respond to medical treatments.

Some people don't respond to cancer drugs as effectively as others, Zaph says. "One reason is that different microbiomes can metabolize the drugs differently." This has huge ramifications for chemotherapy and new cancer treatments called checkpoint inhibitors. As scientists learn more about how different bacteria metabolize drugs, they could possibly improve how effective existing cancer treatments are.

This 3D-Printed Sushi is Customized For You Based on the Biological Sample You Send In

Open Meals
Open Meals

Many high-end restaurants require guests to make a reservation before they dine. At Sushi Singularity in Tokyo, diners will be asked to send fecal samples to achieve the ideal experience. As designboom reports, the new sushi restaurant from Open Meals creates custom sushi recipes to fit each customer's nutritional needs.

Open Meals is known for its experimental food projects, like the "sushi teleportation" concept, which has robotic arms serving up sushi in the form of 3D-printed cubes. This upcoming venture takes the idea of a futuristic sushi restaurant to new extremes.

Guests who plan on dining at Sushi Singularity will receive a health test kit in the mail, with vials for collecting biological materials like urine, saliva, and feces. After the kit is sent back to the sushi restaurant, the customer's genome and nutritional status will be analyzed and made into a "Health ID." Using that information, Sushi Singularity builds personalized sushi recipes, optimizing ingredients with the nutrients the guest needs most. The restaurant uses a machine to inject raw vitamins and minerals directly into the food.

To make things even more dystopian, all the sushi at Sushi Singularity will be produced by a 3D-printer with giant robotic arms. The menu items make the most of the technology; a cell-cultured tuna in a lattice structure, powdered uni hardened with a CO2 laser, and a highly detailed model of a Japanese castle made from flash-frozen squid are a few of the sushi concepts Open Meals has shared.

The company plans to launch Sushi Singularity in Tokyo some time in 2020. Theirs won't be the first sushi robots to roll out in Japan: The food delivery service Ride On Express debuted sushi delivery robots in the country in 2017.

[h/t designboom]

SECTIONS

arrow
LIVE SMARTER