CLOSE

What Is El Niño, and Why Does It Have Such a Big Impact?

Sea surface temperature anomalies, in °C, January 24–31, 2016

A snowstorm in the Midwest this week has its roots in a weather pattern influenced by El Niño—a disturbance that dropped several inches of rain in California, traversed the Rocky Mountains, and spun-up a formidable blizzard that threatens to produce up to a foot of snow across the central United States. El Niño has taken on an almost legendary quality in the United States, entering the collective mind of the public in the late 1990s as an epic weather pattern that drenches California in an unending deluge of tropical moisture.

An El Niño is the abnormal warming of sea surface temperatures in the eastern equatorial Pacific Ocean. The event occurs when winds over the Pacific Ocean near the equator slow down or reverse direction, allowing unusually warm water to accumulate around the eastern part of the equatorial Pacific. When sea surface temperatures in this portion of the Pacific climb 0.5°C above average for seven consecutive months, it’s officially considered an El Niño. Now, an upward shift of one-half of one degree doesn’t sound like much—it’s not!—but, in a similar way to a fever in the human body, it doesn’t take much abnormal heat to make a huge impact both on the ocean and the atmosphere above it.

How can warm water in the Pacific Ocean affect the weather thousands of miles away? Everything is connected. One of the most heavily advertised effects of El Niño is that it can squash the Atlantic hurricane season as the warm water triggers thunderstorms in the eastern Pacific, causing strong upper-level winds to flow east over the Caribbean and Atlantic. This wind shear tears the tops off thunderstorms, keeping tropical activity to a minimum. This is an easily observable effect that we experienced just this past summer. However, the warmer water can also alter the jet stream, which is how we most commonly feel its influence here in the United States.

The jet stream is a fast-moving river of air in the upper levels of the atmosphere that’s usually located between 25,000 and 35,000 feet, the typical cruising altitude for commercial jets. This ribbon of powerful winds is caused by the temperature difference between the tropics and the poles. Weather exists as a result of nature trying to balance itself out—in this case in the Northern Hemisphere, rising warm air in the tropics flows north toward the Arctic, turning east thanks to the Coriolis effect. The resulting river of westerly winds is the jet stream.

The subtropical jet stream over the southern U.S. on February 5, 2016. Source: Tropical Tidbits

During the summer months, the jet stream is usually weaker and stuck in the higher latitudes. This is why weather is generally calmer during the summer, allowing long stretches of hot, humid weather only broken by occasional pop-up thunderstorms. During the cooler months, however, the north-south temperature gradient is much sharper, allowing the jet stream to dive south over the United States (and sometimes even farther south than that). This curvy, dippy jet stream provides us a constant offering of volatile weather, bringing everything from heavy rain or snow to extreme bouts of cold weather.

This is where El Niño factors in. There are actually two jet streams in the Northern Hemisphere: the polar jet stream, which circulates in the higher latitudes, and the subtropical jet stream, which we’ll often find around the southern United States. The polar jet is what brings us our deep shots of frigid air during the dead of winter, and the subtropical jet is often at least partially responsible for the huge, historic snowstorms that occasionally whomp the East Coast.

When the water in the eastern equatorial Pacific Ocean is abnormally warm like it is during an El Niño, it can affect air temperature above the surface. The warmer air allows the subtropical jet stream to grow stronger and establish itself over the southern United States, shoving the polar jet stream farther north near the border between the U.S. and Canada. This brings stormy weather to the southern half of the United States, often manifesting itself in wet low-pressure systems that smack California before slowly trundling across the rest of the country. This also tends to keep the northern United States drier and warmer than normal, though snowy conditions and arctic blasts aren’t uncommon.

If you hear people talk about El Niño causing flooding and snow out west or news anchors report that “El Niño brought heavy rain to Los Angeles yet again today,” take comfort in the fact that you now know that’s not true. El Niño doesn’t directly cause rain or snow or heat or cold in the United States, and El Niño doesn’t make landfall like a hurricane, either, since it’s just abnormally warm ocean water. If all of that warm water ever comes ashore, we’ll probably have a few more problems than worrying about scientific accuracy and semantics. El Niño isn’t and won’t always be the cause of our weather woes this season, but it sure doesn’t help.

nextArticle.image_alt|e
Penn Vet Working Dog Center
arrow
Stones, Bones, and Wrecks
New Program Trains Dogs to Sniff Out Art Smugglers
Penn Vet Working Dog Center
Penn Vet Working Dog Center

Soon, the dogs you see sniffing out contraband at airports may not be searching for drugs or smuggled Spanish ham. They might be looking for stolen treasures.

K-9 Artifact Finders, a new collaboration between New Hampshire-based cultural heritage law firm Red Arch and the University of Pennsylvania, is training dogs to root out stolen antiquities looted from archaeological sites and museums. The dogs would be stopping them at borders before the items can be sold elsewhere on the black market.

The illegal antiquities trade nets more than $3 billion per year around the world, and trafficking hits countries dealing with ongoing conflict, like Syria and Iraq today, particularly hard. By one estimate, around half a million artifacts were stolen from museums and archaeological sites throughout Iraq between 2003 and 2005 alone. (Famously, the craft-supply chain Hobby Lobby was fined $3 million in 2017 for buying thousands of ancient artifacts looted from Iraq.) In Syria, the Islamic State has been known to loot and sell ancient artifacts including statues, jewelry, and art to fund its operations.

But the problem spans across the world. Between 2007 and 2016, U.S. Customs and Border Control discovered more than 7800 cultural artifacts in the U.S. looted from 30 different countries.

A yellow Lab sniffs a metal cage designed to train dogs on scent detection.
Penn Vet Working Dog Center

K-9 Artifact Finders is the brainchild of Rick St. Hilaire, the executive director of Red Arch. His non-profit firm researches cultural heritage property law and preservation policy, including studying archaeological site looting and antiquities trafficking. Back in 2015, St. Hilaire was reading an article about a working dog trained to sniff out electronics that was able to find USB drives, SD cards, and other data storage devices. He wondered, if dogs could be trained to identify the scents of inorganic materials that make up electronics, could they be trained to sniff out ancient pottery?

To find out, St. Hilaire tells Mental Floss, he contacted the Penn Vet Working Dog Center, a research and training center for detection dogs. In December 2017, Red Arch, the Working Dog Center, and the Penn Museum (which is providing the artifacts to train the dogs) launched K-9 Artifact Finders, and in late January 2018, the five dogs selected for the project began their training, starting with learning the distinct smell of ancient pottery.

“Our theory is, it is a porous material that’s going to have a lot more odor than, say, a metal,” says Cindy Otto, the executive director of the Penn Vet Working Dog Center and the project’s principal investigator.

As you might imagine, museum curators may not be keen on exposing fragile ancient materials to four Labrador retrievers and a German shepherd, and the Working Dog Center didn’t want to take any risks with the Penn Museum’s priceless artifacts. So instead of letting the dogs have free rein to sniff the materials themselves, the project is using cotton balls. The researchers seal the artifacts (broken shards of Syrian pottery) in airtight bags with a cotton ball for 72 hours, then ask the dogs to find the cotton balls in the lab. They’re being trained to disregard the smell of the cotton ball itself, the smell of the bag it was stored in, and ideally, the smell of modern-day pottery, eventually being able to zero in on the smell that distinguishes ancient pottery specifically.

A dog looks out over the metal "pinhweel" training mechanism.
Penn Vet Working Dog Center

“The dogs are responding well,” Otto tells Mental Floss, explaining that the training program is at the stage of "exposing them to the odor and having them recognize it.”

The dogs involved in the project were chosen for their calm-but-curious demeanors and sensitive noses (one also works as a drug-detection dog when she’s not training on pottery). They had to be motivated enough to want to hunt down the cotton balls, but not aggressive or easily distracted.

Right now, the dogs train three days a week, and will continue to work on their pottery-detection skills for the first stage of the project, which the researchers expect will last for the next nine months. Depending on how the first phase of the training goes, the researchers hope to be able to then take the dogs out into the field to see if they can find the odor of ancient pottery in real-life situations, like in suitcases, rather than in a laboratory setting. Eventually, they also hope to train the dogs on other types of objects, and perhaps even pinpoint the chemical signatures that make artifacts smell distinct.

Pottery-sniffing dogs won’t be showing up at airport customs or on shipping docks soon, but one day, they could be as common as drug-sniffing canines. If dogs can detect low blood sugar or find a tiny USB drive hidden in a house, surely they can figure out if you’re smuggling a sculpture made thousands of years ago in your suitcase.

nextArticle.image_alt|e
iStock
arrow
Medicine
New Cancer-Fighting Nanobots Can Track Down Tumors and Cut Off Their Blood Supply
iStock
iStock

Scientists have developed a new way to cut off the blood flow to cancerous tumors, causing them to eventually shrivel up and die. As Business Insider reports, the new treatment uses a design inspired by origami to infiltrate crucial blood vessels while leaving the rest of the body unharmed.

A team of molecular chemists from Arizona State University and the Chinese Academy of Sciences describe their method in the journal Nature Biotechnology. First, they constructed robots that are 1000 times smaller than a human hair from strands of DNA. These tiny devices contain enzymes called thrombin that encourage blood clotting, and they're rolled up tightly enough to keep the substance contained.

Next, researchers injected the robots into the bloodstreams of mice and small pigs sick with different types of cancer. The DNA sought the tumor in the body while leaving healthy cells alone. The robot knew when it reached the tumor and responded by unfurling and releasing the thrombin into the blood vessel that fed it. A clot started to form, eventually blocking off the tumor's blood supply and causing the cancerous tissues to die.

The treatment has been tested on dozen of animals with breast, lung, skin, and ovarian cancers. In mice, the average life expectancy doubled, and in three of the skin cancer cases tumors regressed completely.

Researchers are optimistic about the therapy's effectiveness on cancers throughout the body. There's not much variation between the blood vessels that supply tumors, whether they're in an ovary in or a prostate. So if triggering a blood clot causes one type of tumor to waste away, the same method holds promise for other cancers.

But before the scientists think too far ahead, they'll need to test the treatments on human patients. Nanobots have been an appealing cancer-fighting option to researchers for years. If effective, the machines can target cancer at the microscopic level without causing harm to healthy cells. But if something goes wrong, the bots could end up attacking the wrong tissue and leave the patient worse off. Study co-author Hao Yan believes this latest method may be the one that gets it right. He said in a statement, "I think we are much closer to real, practical medical applications of the technology."

[h/t Business Insider]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios