Original image

A Look Inside NASA's Spaceship Factory

Original image

The most striking thing about the Orion Crew Module is how small it is. NASA is so easily understood on television and film as a Giant Thing—impossibly large rockets and vast launch sites and fiery, apocalyptic launches to an infinite void—but when seen at a human scale—an Orion scale—its size is unnerving. This is it?

Orion is the first human-rated deep space vessel to be built by NASA in 40 years. It is a space capsule, and like the famed Apollo capsules, it is a vehicle of exploration. It was designed to take human beings to moons, asteroids, and other planets. Its intended reusability also makes it a replacement of sorts for the space shuttle, though unlike the shuttle, it was designed to travel much greater distances. The shuttle traveled to low Earth orbit; Orion can travel to Mars.

Its diameter is about the length of a mid-size sedan, and it will be mounted to the top of a rocket that's taller than the Statue of Liberty. After being shot into space, it is what astronauts will briefly call home—what will shield them from radiation, provide them warmth, and recycle their air and water. It is what will keep them alive.

Following decades of abandoned plans, doomed programs, and dashed hopes, it feels almost impossible to believe: Orion is real. The men and women of NASA took dreams and raw materials and turned them into something you can see and feel—something that will expand the physical presence of humanity by 150 million miles, and give future generations new horizons to watch the sun rise, and the Earth rise.

Last week at the NASA Michoud Assembly Facility in New Orleans, the newly built Orion pressure vessel—the core of the spacecraft that keeps "space" outside and air inside—was on display for the press, visiting officials, and the facility's 3000 workers. It was a sending-off party of sorts for the capsule. Yesterday it was loaded onto an enormous plane (with the ironic name "Super Guppy") and flown to Kennedy Space Center for some 200,000 parts to be added to it.

Steve Doering, the core stage manager of the Space Launch System (SLS), a 5.5 million-pound, 321-foot tall rocket.

At Michoud, it presented as a stout flying saucer wrapped in a latticework of metal framing. (The frame is actually one with the spacecraft itself; the grid of supports is machined into the slabs of aluminum comprising the vessel.) It seems from here almost like the rest is a formality. 

The opposite is true, of course. Nothing is perfunctory in human space exploration. Every bolt, fitting, gasket, and widget was chosen for a reason, and has to meet some extraordinarily rigid threshold of safety and reliability. After Orion is assembled at Kennedy, more tests will follow: of structural integrity and emergency abort sequences and avionics and system performance and interactions. In 2018 the spacecraft will launch as part of Exploration Mission 1, its course taking it to cis-lunar space—the vast area of space between the Earth and the Moon—around the far side of the Moon, and then back to Earth, where it will splash down into the Pacific Ocean. It will not be carrying people. If the mission is a success, humans will fly up on the launch that follows: Exploration Mission 2.


Michoud looks like a place where things are built. Spacecraft, yes, and rockets—the biggest ever imagined—but things all the same. With only slight changes, it could be a place where cars are manufactured, or supercomputers, or valves, or motors. Michoud is like the world's greatest high school metal shop, only instead of turning wrenches to automatic transmissions, the men and women here apply tools to spacecraft. Sheets of metal roll in the front door, and spaceships and rockets roll out the back.

The facility is located on the outskirts of New Orleans, amidst vast footprints of vacant land. Across the street from Michoud is a Folgers Coffee plant, leaving the air outside redolent with the soft bitterness of a newly opened bag of ground coffee. That itself is striking—the mix of coffee, concrete, cars, and cranes. This is where science fiction is realized, and it's all so normal. The workers here are some of the smartest people in the world doing some of the most challenging and important work in the world, but they seem like true workers in the grandest human sense of the word, the kinds of men and women otherwise seen with sleeves rolled up on wartime propaganda posters. Together we can do it! Keep 'em firing!

Mark Kirasich, the program manager of Orion, described the Orion team as the "craftsmen of the 21st century." In some beautiful future of humanity, this is the job where blue collar men and women punch in at 9, ply their trade, punch out, and grab beers before flying home on jetpacks. Today they build Orion spacecraft and the Space Launch System rockets that will take them into space. Previously, they built the 15-story external fuel tanks for the space shuttle, and the first stage of the Saturn V rockets that sent men to the Moon.

Here is how they built the pressure vessel of the Orion Crew Module. It is made of seven massive aluminum pieces: forward and aft bulkheads; a tunnel for docking with other spacecraft; three panels that form a cone; and a barrel, in which astronauts will live for days at a time, and weeks, if necessary. When NASA says seven panels make up the pressure vessel, they mean seven panels: there are no bolts or fasteners involved in its assembly. The pieces are fused through a special process called "self-reacting friction-stir welding." According to NASA, the welds first transform metal into a "plastic-like state" before special tools stir and bond the different pieces. Compared with other welds, the resultant weld is generally indistinguishable from the materials themselves.

Only seven main welds hold the entire thing together—half the number necessary to build the Orion test vehicle that launched successfully in 2014. This reduction in welds lightened this iteration of the vessel by 500 pounds of mass—a great achievement in an enterprise where more mass means more money.

Another result of the welding process is a pristine vessel assembly. During the Apollo program, capsules under construction registered hundreds of welding defects, each of which had to be corrected before astronauts could go up. So far, this new process has produced no defects at all. Having now perfected the technique, NASA officials expect to roll the welding process out to the private sector—a notable example of how the space program directly benefits American business.

To build America's fleet of rockets and crewed spacecraft, it takes 832 acres of land and 3.8 million square feet of total infrastructure. Michoud is part of an elegant third-coast assembly-line. The structural heart of Orion is built here, but so too is the Space Launch System (SLS), a 5.5-million-pound, 321-foot-tall rocket that is capable of producing 8.4 million pounds of thrust at liftoff. The first launch of the SLS will take place in 2018, and will carry Orion. The rocket is intended to send very heavy things very far into space at very high speeds—precisely what NASA needs to do in order to send people and equipment to Mars. SLS could also trim years from the travel time of a spacecraft to Europa, for example.

The process necessary to build SLS is almost as daunting as the rocket itself. Its liquid hydrogen tank requires the fabrication of 22-foot-tall barrels. To then stack the six barrels necessary for the core stage (the rocket's central propulsion element), massive lifts in a "vertical welding center" are used, each segment being lifted as though with a colossal Pez dispenser, with subsequent barrels inserted beneath and welded together using the self-reacting friction stir process.

At left, in blue, is the friction-stir welding machine, which creates the barrels that make up the SLS core stage. It welds together seven curved panels to form one 26.2-foot-diameter, 22-foot-tall barrel. 

After the core stage is built and rocket engines installed, SLS will be transported to the Michoud dock and loaded onto NASA's massive and specially modified Pegasus barge. It will sail east to John C. Stennis Space Center, where it will then be installed in the B2 test stand for hot fire tests. This is the same stand that tested the first stage of the Saturn V rockets used in the Apollo program. SLS will later sail farther east to Kennedy Space Center in Florida, where it will launch Orion into space.


Humans will not fly on Exploration Mission 1 and might never fly inside of this particular Orion pressure vessel at all. NASA engineers will first have to analyze how the vessel held up during launch, maneuvers, reentry, descent, and water landing. In any event, humans will not fly on any Orion capsule at all until 2023, when Exploration Mission 2 launches, again toward the Moon. That will be the first time in over 50 years that human beings will have left low Earth orbit, the previous time being Apollo 17 in 1972.

In the very long term, SLS and the Orion Crew Module are going to send astronauts to Mars. That launch, however, is at least another 15 to 20 years away. NASA has never before attempted a project so ambitious over such a long stretch of time. (For a comparison of timelines, consider that the start of America's manned space program from zero through the final trip to the Moon only took 15 years total.) Meanwhile, NASA intends cis-lunar space to become a hive of activity. They are calling that region the "proving grounds." Future missions will place laboratory modules, habitat modules, and other structures into stable orbits for later pickup by Orion for missions of increasing length. The goal is to prove "Earth independence" for long-duration missions, which is critical if you want to press boot prints into Martian soil.

Reaching that point in our mission capabilities requires a certain clarity of vision. Whether Washington is up to the task remains an open question. Michoud certainly seems to be on able footing. When Steve Doering, the core stage manager of SLS, for example, explained how the rocket comes together, he wasn't speaking abstractly. He pointed at a 22-foot barrel of the core stage, but his countenance suggested that he was seeing a 321-foot rocket on the launch pad.

Such vision is necessary to overcome the challenges of life beyond Earth. Space is harsh. It doesn't want us there. Orion is humanity's defiance of the universe. You won't give us air? We'll bring it ourselves. You give us too much radiation? We'll ward it away. You confine us to one tiny planet? We'll populate the solar system, and we'll do it with logic and reason, science and engineering. We'll harness the metals and molecules of this world and use them to fly to another. We'll do it with hard work in factories like Michoud, and once we reach our goal, the question won't be "Now what?" but rather: "Where next?"

All images courtesy of David W. Brown.

Original image
Hulton Archive/Getty Images
11 Out-of-This-World Facts About Carl Sagan
Original image
Hulton Archive/Getty Images

Carl Sagan was perhaps America’s most beloved scientific visionary since Albert Einstein. Both a gifted astronomy researcher and an incredible communicator, he brought the wonders of the universe to the masses with his popular TV series Cosmos and books like the Pulitzer Prize–winning Dragons of Eden and Pale Blue Dot. His only novel, Contact, later became a sci-fi movie starring Jodie Foster and Matthew McConaughey. Here are a few things you might not know about the scientist, TV star, and amateur turtleneck model.


After Sagan served five years at the esteemed university as an assistant professor, Harvard denied him tenure in 1967, in part because one of his mentors at the University of Chicago derided his work as needlessly wordy and useless. He took a job at Cornell instead, where he stayed on as a professor until his death in 1996.


Carl Sagan standing with a model of the Viking Lander.
JPL via Wikimedia Commons // Public Domain

Sagan was an avid self-editor. A total of 20 drafts of Sagan’s 1994 book Pale Blue Dot exist today in the Library of Congress, each filled with handwritten edits, annotations, and revisions by the author. However, he drafted all of his writing—even grant proposals—by dictating his ideas onto a cassette. The contents were then transcribed for him and returned for editing.


In 1993, Sagan brainstormed a long list of possible children’s books for a series structured around the theme of “why?” Other potential ideas included Why Is It Warm In Summer?, Why Are There Lakes?, and What Is Air?


Sagan argued against funding NASA’s Space Shuttle program in favor of more robotic exploration of the farther reaches of space. “That’s not space exploration,” he said in an interview about the space shuttle program’s week-long orbits. “Space exploration is going to other worlds.” A space station would only be worth it, he argued, if it was preparing humans for long-term journeys to space, he told Charlie Rose in 1995.


Carl Sagan with the other founders of the Planetary Society in the 1970s.
JPL via Wikimedia Commons // Public Domain

Sagan’s 1960 Ph.D. thesis concerned the atmosphere of Venus. His theoretical model showed that the planet’s extremely high surface temperatures were due to the greenhouse effect of an atmosphere filled with carbon dioxide and water vapor. In his book Cosmos, he wrote, “The surface environment of Venus is a warning: something disastrous can happen to a planet rather like our own.”


Part of the Carl Sagan Papers in the Library of Congress.
Paul Morigi/Getty Images

Family Guy creator Seth McFarlane put up an undisclosed sum to help the Library of Congress buy more than a thousand boxes of material kept by the late scientist and his wife and collaborator, Ann Druyan. The papers in The Seth MacFarlane Collection of Carl Sagan and Ann Druyan Archive, which opened in 2013, include some of Sagan’s earliest notebooks and report cards.


After Sagan appeared in several successful spots on the Tonight Show Starring Johnny Carson, Carson saw fit to send up the scientist’s signature style (turtleneck included) in a parody sketch.

Carson’s exaggerated use of “billions and billions” would later become associated with the astronomer, though he didn’t use it himself. However, Sagan did talk about large numbers quite a lot, as this supercut shows.


Sagan and Druyan, who would create the TV show Cosmos together, fell in love while working on the Voyager message. The courtship was exceedingly brief, as NPR's Radiolab describes:

“After searching endlessly for a piece of Chinese music to put on the record, Druyan had finally found a 2500-year-old song called ‘Flowing Stream.’ In her excitement, she called Sagan and left a message at his hotel. At that point, Druyan and Sagan had been professional acquaintances and friends, but nothing more. But an hour later, when Sagan called back, something happened. By the end of that call, Druyan and Sagan were engaged to be married."


Under the pseudonym “Mr. X,” Sagan wrote a 1969 essay for Time magazine about the personal benefits he’d seen from cannabis use. Then in his mid-30s, he admitted to smoking throughout the prior decade. “I find that today a single joint is enough to get me high,” he wrote, going on to observe that marijuana had enhanced his appreciation for art and music. He concluded that “the illegality of cannabis is outrageous, an impediment to full utilization of a drug which helps produce the serenity and insight, sensitivity and fellowship so desperately needed in this increasingly mad and dangerous world.”


“In a global terrestrial society centuries in the future, the ship’s officers are embarrassingly Anglo-American. In fact, only two of 12 or 14 interstellar vessels are given non-English names, Kongo and Potemkin,” he wrote in a piece about the impact of science fiction on his life in The New York Times in 1978.


Despite his passion for exploring space, Sagan argued for the preservation of Mars even if it meant limiting our exploration of the planet. In Cosmos, Sagan declared:

“If there is life on Mars, I believe we should do nothing with Mars. Mars then belongs to the Martians, even if the Martians are only microbes. The existence of an independent biology on a nearby planet is a treasure beyond assessing, and the preservation of that life must, I think, supersede any other possible use of Mars.”

Original image
NASA, Wikimedia Commons // Public Domain
Here's How to Watch NASA's Livestream Spacewalk Series
Original image
NASA, Wikimedia Commons // Public Domain

Like many Americans, astronauts Randy Bresnik and Mark Vande Hei got up and went to work this morning. But instead of an office, their jobs took them on a walk outside the International Space Station. If that sounds more exciting than what you’re doing at the moment, you can watch their progress live on NASA’s website.

The spacewalk, which commenced the morning of October 5 at 8 a.m. EDT and is expected to last over six hours, is the first of three NASA plans to livestream during the month of October. On this mission, Bresnik, Expedition 53's commander, and Vande Hei, a flight engineer, are replacing one of the motorized lathes on the station’s robotic arm. The Latching End Effectors as they’re called are used to grab cargo vehicles and payloads that arrive at the station.

Bresnik has worked aboard the ISS since July and Vande Hei since September. The pair will don their spacesuits again for NASA’s second livestreamed spacewalk of the month on October 10. On October 18, Bresnik will be leading the third spacewalk and he’ll be assisted by flight engineer Joe Acaba. If you missed this event, you can follow NASA Live for more streams of spacewalks, cargo craft launches, and the occasional orbiter disintegrating in Saturn's atmosphere.


More from mental floss studios