CLOSE
Original image

Andry Brunning via Compound Interest // CC BY-NC-ND 4.0

There are 39 Kinds of Snowflakes

Original image

Andry Brunning via Compound Interest // CC BY-NC-ND 4.0

Every special little snowflake may be unique, but they’re not all that different from each other, at least at the molecular level.  Depending on the temperature and humidity at which they form, snow crystals form into different shapes. Scientists have categorized the crystal structures of snowflakes into 39 different categories, including columns, irregular particles, and more, all of which are visualized in the graphic above by chemistry teacher and science infographic wiz Andry Brunning of Compound Interest.

As scientists find out more about crystal structures, the types of known snowflakes out there have increased. There were only 21 categories of crystal shapes in the 1930s, but in recent years, that number has ballooned up to 121 subtypes—you’ll have to look at the expanded version of the graphic to see those (along the bottom of the image). But those are pretty fine-grained definitions. There are 39 intermediate classifications of basic snowflake shapes, including several irregularly shaped forms of solid precipitation. 

You may not be able to tell a column crystal from a rimed crystal with the naked eye, but you can definitely throw out a few of these categorizations to impress people while you’re snowed in this weekend.

[h/t: Smithsonian]

Original image
iStock
arrow
science
Why a Howling Wind Sounds So Spooky, According to Science
Original image
iStock

Halloween is swiftly approaching, meaning you'll likely soon hear creepy soundtracks—replete with screams, clanking chains, and howling winds—blaring from haunted houses and home displays. While the sound of human suffering is frightful for obvious reasons, what is it, exactly, about a brisk fall gust that sends shivers up our spines? In horror movie scenes and ghost stories, these spooky gales are always presented as blowing through dead trees. Do bare branches actually make the natural wailing noises louder, or is this detail added simply for atmospheric purposes?

As the SciShow's Hank Green explains in the video below, wind howls because it curves around obstacles like trees or buildings. When fast-moving air goes around, say, a tree, it splits up as it whips past, before coming back together on the other side. Due to factors such as natural randomness, air speed, and the tree's surface, one side's wind is going to be slightly stronger when the two currents rejoin, pushing the other side's gust out of the way. The two continue to interact back-and-forth in what could be likened to an invisible wrestling match, as high-pressure airwaves and whirlpools mix together and vibrate the air. If the wind is fast enough, this phenomenon will produce the eerie noise we've all come to recognize in horror films.

Leafy trees "will absorb some of the vibrations in the air and dull the sound, but without leaves—like if it's the middle of the winter or the entire forest is dead—the howling will travel a lot farther," Green explains. That's why a dead forest on a windy night sounds so much like the undead.

Learn more by watching SciShow's video below.

Original image
AFP/Stringer/Getty Images
arrow
Space
SpaceX's Landing Blooper Reel Shows That Even Rocket Scientists Make Mistakes
Original image
SpaceX's Falcon 9 rocket launches.
AFP/Stringer/Getty Images

On March 30, 2017, SpaceX did something no space program had done before: They relaunched an orbital class rocket from Earth that had successfully achieved lift-off just a year earlier. It wasn't the first time Elon Musk's company broke new ground: In December 2015, it nailed the landing on a reusable rocket—the first time that had been done—and five months later landed a rocket on a droneship in the middle of the ocean, which was also unprecedented. These feats marked significant moments in the history of space travel, but they were just a few of the steps in the long, messy journey to achieve them. In SpaceX's new blooper reel, spotted by Ars Technica, you can see just some of the many failures the company has had along the way.

The video demonstrates that failure is an important part of the scientific process. Of course when the science you're working in deals with launching and landing rockets, failure can be a lot more dramatic than it is in a lab. SpaceX has filmed their rockets blowing up in the air, disintegrating in the ocean, and smashing against landing pads, often because of something small like a radar glitch or lack of propellant.

While explosions—or "rapid unscheduled disassemblies," as the video calls them—are never ideal, some are preferable to others. The Falcon 9 explosion that shook buildings for miles last year, for instance, ended up destroying the $200 million Facebook satellite onboard. But even costly hiccups such as that one are important to future successes. As Musk once said, "If things are not failing, you are not innovating enough."

You can watch the fiery compilation below.

[h/t Ars Technica]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios