Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth
Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth

We Just Had the First January Hurricane in the Atlantic Since 1954

Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth
Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth

We just had a hurricane in the Atlantic Ocean. That wouldn’t be an unusual statement during the summer, but no, it’s the middle of January—the middle of winter!—and there was a full-blown hurricane in the Atlantic Ocean. (As of Friday morning, Alex weakened to a tropical storm as it made landfall in the Azores, off the coast of Portugal.) Stranger things have happened, but this one’s pretty high up there. Why did Hurricane Alex develop at such an odd time of the year? The dynamics came together just right, like nature winning the tropical lottery. 

(National Hurricane Center’s forecast track for Hurricane Alex, January 14, 2016. | Source: Dennis Mersereau)

The National Hurricane Center (NHC), the official tropical forecasting branch of the U.S. National Weather Service, said that Hurricane Alex had 85 MPH winds on the afternoon of Thursday, January 14, 2016, with a minimum central pressure of 981 millibars. (Standard sea level pressure is 1013 millibars, so 981 millibars is decent for a category one hurricane.)

The low that would become Alex had a long life before turning into a hurricane a few hundred miles northwest of the African coast. The NHC first issued a forecast for soon-to-be-Alex back when it was still an extratropical cyclone near Bermuda on January 7, tracking it across the ocean until it formed into a subtropical storm (I’ll explain that below) and then an unlikely hurricane seven days later.

While the storm certainly didn’t take forecasters by surprise, it’s surprising in that hurricanes aren’t really supposed to happen in the Atlantic in the middle of the winter.


(Tropical cyclone climatology in the Atlantic Ocean. | Source: NHC)

The Atlantic Ocean’s hurricane season runs from June 1 through November 30. The climatological peak in hurricane activity is September 10; once fall cold fronts start sweeping through the United States and cold air pushes over the Atlantic Ocean, tropical activity drops off dramatically and it gets harder and harder for new storms to develop.

A “hurricane season” is little but a human construct—a range of dates on the human-made calendar that delineates a period of the year when our observations show that tropical systems are most likely to form in a certain ocean basin. But nature doesn’t always play by our rules, and nature does not define itself with our boxes. It is for this reason that nature sometimes leaves us scratching our heads, as it did when Hurricane Alex formed on January 14.

We’ve seen tropical storms or hurricanes form in the Atlantic in every month of the year—they’re least common in February and April (with only one system each on record)—and there have been a handful of systems in January. Two of the most well-known January storms actually formed on December 30 of the previous year. Tropical Storm Zeta, the last storm of the hyperactive 2005 Atlantic hurricane season, formed just before New Year’s Eve and dissipated on January 7, 2006. Alex is only the third known hurricane to exist in the Atlantic Ocean during the month of January, the other two being 1954’s Hurricane Alice (which was the other storm to form on December 30, surviving the first six days of 1955) and a brief, unnamed hurricane in the eastern Atlantic at the beginning of January 1938.


Visible satellite loop of Hurricane Alex on January 13 and 14, 2016. Image credit: NOAA

There are three types of large-scale cyclones (low pressure systems) that we deal with in the weather world. The most common type is called an extratropical cyclone, or one of those low-pressure systems that has cold and warm fronts swirling around its circulation. These systems, sometimes called “mid-latitude cyclones,” feed their energy from the jet stream, which creates strong lift in the atmosphere across a large area, leaving less air and lower air pressure at the surface. Most of our exciting weather is the result of extratropical cyclones.

A tropical cyclone, on the other hand, is one that’s completely warm and moist throughout the entire storm. Tropical cyclones are known as warm-core storms, as the cyclone gathers its strength from the powerful thunderstorms around the eye—the eyewall—which in turn feed off of the warm water below. Air rapidly rises through the thunderstorms in the eyewall, leaving very low air pressure at the surface. If dry air, strong winds, or cool water disrupt the thunderstorms in the eyewall, the storm quickly weakens.

A subtropical storm is sort of in between the other two types of cyclones, existing as a cyclone that’s shed its cold/warm fronts and consists of a warm core that still has some cold air left in the upper levels of the atmosphere. When conditions are favorable, a majority of subtropical storms in the Atlantic will fully transition into tropical entities, as Alex did. If you ever find yourself in the path of a subtropical storm, you won’t notice much of a difference—the difference between subtropical and tropical is mostly a concern for meteorologists and hardcore weather buffs.


(Sea surface temperatures, in °C, for January 13, 2016. | Source: NOAA/ESRL/PSD)

A disturbance over the water needs three main ingredients in order to turn into a tropical cyclone: warm water, low wind shear, and ample moisture. In this case, there was very little wind shear over the eastern Atlantic Ocean, and the low that would become Alex managed to ingest enough tropical moisture from the south that it insulated the system from dry air to its north and west.

That left the issue of warm water. The water isn’t all that warm in the northeastern Atlantic Ocean even in the middle of the summer, let alone the middle of January. Water temperatures are far below the levels one would typically expect to sustain a hurricane, but there’s a catch. Sharp temperature differences between air at the surface and air in the upper levels led to strong instability, allowing air to rise very quickly through the atmosphere. According to the NHC, yesterday the air high in the atmosphere above the hurricane was -60°C, which is extremely cold. This strong vertical temperature gradient is compensating for the lack of warm water, allowing thunderstorms to blossom and permitting Alex to defy the odds and become a hurricane.

What does this storm say about this summer’s hurricane season? Not much. The ongoing El Niño in the eastern Pacific Ocean is expected to wear off by this summer, bringing along the potential for a more active hurricane season than we saw in 2015. Fortunately, however, Hurricane Alex isn’t an omen for storms to come. This historical oddity was a one-off event, and it’s something we’re unlikely to see again for many years. 

Penn Vet Working Dog Center
Stones, Bones, and Wrecks
New Program Trains Dogs to Sniff Out Art Smugglers
Penn Vet Working Dog Center
Penn Vet Working Dog Center

Soon, the dogs you see sniffing out contraband at airports may not be searching for drugs or smuggled Spanish ham. They might be looking for stolen treasures.

K-9 Artifact Finders, a new collaboration between New Hampshire-based cultural heritage law firm Red Arch and the University of Pennsylvania, is training dogs to root out stolen antiquities looted from archaeological sites and museums. The dogs would be stopping them at borders before the items can be sold elsewhere on the black market.

The illegal antiquities trade nets more than $3 billion per year around the world, and trafficking hits countries dealing with ongoing conflict, like Syria and Iraq today, particularly hard. By one estimate, around half a million artifacts were stolen from museums and archaeological sites throughout Iraq between 2003 and 2005 alone. (Famously, the craft-supply chain Hobby Lobby was fined $3 million in 2017 for buying thousands of ancient artifacts looted from Iraq.) In Syria, the Islamic State has been known to loot and sell ancient artifacts including statues, jewelry, and art to fund its operations.

But the problem spans across the world. Between 2007 and 2016, U.S. Customs and Border Control discovered more than 7800 cultural artifacts in the U.S. looted from 30 different countries.

A yellow Lab sniffs a metal cage designed to train dogs on scent detection.
Penn Vet Working Dog Center

K-9 Artifact Finders is the brainchild of Rick St. Hilaire, the executive director of Red Arch. His non-profit firm researches cultural heritage property law and preservation policy, including studying archaeological site looting and antiquities trafficking. Back in 2015, St. Hilaire was reading an article about a working dog trained to sniff out electronics that was able to find USB drives, SD cards, and other data storage devices. He wondered, if dogs could be trained to identify the scents of inorganic materials that make up electronics, could they be trained to sniff out ancient pottery?

To find out, St. Hilaire tells Mental Floss, he contacted the Penn Vet Working Dog Center, a research and training center for detection dogs. In December 2017, Red Arch, the Working Dog Center, and the Penn Museum (which is providing the artifacts to train the dogs) launched K-9 Artifact Finders, and in late January 2018, the five dogs selected for the project began their training, starting with learning the distinct smell of ancient pottery.

“Our theory is, it is a porous material that’s going to have a lot more odor than, say, a metal,” says Cindy Otto, the executive director of the Penn Vet Working Dog Center and the project’s principal investigator.

As you might imagine, museum curators may not be keen on exposing fragile ancient materials to four Labrador retrievers and a German shepherd, and the Working Dog Center didn’t want to take any risks with the Penn Museum’s priceless artifacts. So instead of letting the dogs have free rein to sniff the materials themselves, the project is using cotton balls. The researchers seal the artifacts (broken shards of Syrian pottery) in airtight bags with a cotton ball for 72 hours, then ask the dogs to find the cotton balls in the lab. They’re being trained to disregard the smell of the cotton ball itself, the smell of the bag it was stored in, and ideally, the smell of modern-day pottery, eventually being able to zero in on the smell that distinguishes ancient pottery specifically.

A dog looks out over the metal "pinhweel" training mechanism.
Penn Vet Working Dog Center

“The dogs are responding well,” Otto tells Mental Floss, explaining that the training program is at the stage of "exposing them to the odor and having them recognize it.”

The dogs involved in the project were chosen for their calm-but-curious demeanors and sensitive noses (one also works as a drug-detection dog when she’s not training on pottery). They had to be motivated enough to want to hunt down the cotton balls, but not aggressive or easily distracted.

Right now, the dogs train three days a week, and will continue to work on their pottery-detection skills for the first stage of the project, which the researchers expect will last for the next nine months. Depending on how the first phase of the training goes, the researchers hope to be able to then take the dogs out into the field to see if they can find the odor of ancient pottery in real-life situations, like in suitcases, rather than in a laboratory setting. Eventually, they also hope to train the dogs on other types of objects, and perhaps even pinpoint the chemical signatures that make artifacts smell distinct.

Pottery-sniffing dogs won’t be showing up at airport customs or on shipping docks soon, but one day, they could be as common as drug-sniffing canines. If dogs can detect low blood sugar or find a tiny USB drive hidden in a house, surely they can figure out if you’re smuggling a sculpture made thousands of years ago in your suitcase.

New Cancer-Fighting Nanobots Can Track Down Tumors and Cut Off Their Blood Supply

Scientists have developed a new way to cut off the blood flow to cancerous tumors, causing them to eventually shrivel up and die. As Business Insider reports, the new treatment uses a design inspired by origami to infiltrate crucial blood vessels while leaving the rest of the body unharmed.

A team of molecular chemists from Arizona State University and the Chinese Academy of Sciences describe their method in the journal Nature Biotechnology. First, they constructed robots that are 1000 times smaller than a human hair from strands of DNA. These tiny devices contain enzymes called thrombin that encourage blood clotting, and they're rolled up tightly enough to keep the substance contained.

Next, researchers injected the robots into the bloodstreams of mice and small pigs sick with different types of cancer. The DNA sought the tumor in the body while leaving healthy cells alone. The robot knew when it reached the tumor and responded by unfurling and releasing the thrombin into the blood vessel that fed it. A clot started to form, eventually blocking off the tumor's blood supply and causing the cancerous tissues to die.

The treatment has been tested on dozen of animals with breast, lung, skin, and ovarian cancers. In mice, the average life expectancy doubled, and in three of the skin cancer cases tumors regressed completely.

Researchers are optimistic about the therapy's effectiveness on cancers throughout the body. There's not much variation between the blood vessels that supply tumors, whether they're in an ovary in or a prostate. So if triggering a blood clot causes one type of tumor to waste away, the same method holds promise for other cancers.

But before the scientists think too far ahead, they'll need to test the treatments on human patients. Nanobots have been an appealing cancer-fighting option to researchers for years. If effective, the machines can target cancer at the microscopic level without causing harm to healthy cells. But if something goes wrong, the bots could end up attacking the wrong tissue and leave the patient worse off. Study co-author Hao Yan believes this latest method may be the one that gets it right. He said in a statement, "I think we are much closer to real, practical medical applications of the technology."

[h/t Business Insider]


More from mental floss studios