Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth
Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth

We Just Had the First January Hurricane in the Atlantic Since 1954

Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth
Hurricane Alex in the eastern Atlantic Ocean, January 14, 2016. | Source: Google Earth

We just had a hurricane in the Atlantic Ocean. That wouldn’t be an unusual statement during the summer, but no, it’s the middle of January—the middle of winter!—and there was a full-blown hurricane in the Atlantic Ocean. (As of Friday morning, Alex weakened to a tropical storm as it made landfall in the Azores, off the coast of Portugal.) Stranger things have happened, but this one’s pretty high up there. Why did Hurricane Alex develop at such an odd time of the year? The dynamics came together just right, like nature winning the tropical lottery. 

(National Hurricane Center’s forecast track for Hurricane Alex, January 14, 2016. | Source: Dennis Mersereau)

The National Hurricane Center (NHC), the official tropical forecasting branch of the U.S. National Weather Service, said that Hurricane Alex had 85 MPH winds on the afternoon of Thursday, January 14, 2016, with a minimum central pressure of 981 millibars. (Standard sea level pressure is 1013 millibars, so 981 millibars is decent for a category one hurricane.)

The low that would become Alex had a long life before turning into a hurricane a few hundred miles northwest of the African coast. The NHC first issued a forecast for soon-to-be-Alex back when it was still an extratropical cyclone near Bermuda on January 7, tracking it across the ocean until it formed into a subtropical storm (I’ll explain that below) and then an unlikely hurricane seven days later.

While the storm certainly didn’t take forecasters by surprise, it’s surprising in that hurricanes aren’t really supposed to happen in the Atlantic in the middle of the winter.

HURRICANE SEASON

(Tropical cyclone climatology in the Atlantic Ocean. | Source: NHC)

The Atlantic Ocean’s hurricane season runs from June 1 through November 30. The climatological peak in hurricane activity is September 10; once fall cold fronts start sweeping through the United States and cold air pushes over the Atlantic Ocean, tropical activity drops off dramatically and it gets harder and harder for new storms to develop.

A “hurricane season” is little but a human construct—a range of dates on the human-made calendar that delineates a period of the year when our observations show that tropical systems are most likely to form in a certain ocean basin. But nature doesn’t always play by our rules, and nature does not define itself with our boxes. It is for this reason that nature sometimes leaves us scratching our heads, as it did when Hurricane Alex formed on January 14.

We’ve seen tropical storms or hurricanes form in the Atlantic in every month of the year—they’re least common in February and April (with only one system each on record)—and there have been a handful of systems in January. Two of the most well-known January storms actually formed on December 30 of the previous year. Tropical Storm Zeta, the last storm of the hyperactive 2005 Atlantic hurricane season, formed just before New Year’s Eve and dissipated on January 7, 2006. Alex is only the third known hurricane to exist in the Atlantic Ocean during the month of January, the other two being 1954’s Hurricane Alice (which was the other storm to form on December 30, surviving the first six days of 1955) and a brief, unnamed hurricane in the eastern Atlantic at the beginning of January 1938.

EXTRATROPICAL VS. SUBTROPICAL VS. TROPICAL

Visible satellite loop of Hurricane Alex on January 13 and 14, 2016. Image credit: NOAA

There are three types of large-scale cyclones (low pressure systems) that we deal with in the weather world. The most common type is called an extratropical cyclone, or one of those low-pressure systems that has cold and warm fronts swirling around its circulation. These systems, sometimes called “mid-latitude cyclones,” feed their energy from the jet stream, which creates strong lift in the atmosphere across a large area, leaving less air and lower air pressure at the surface. Most of our exciting weather is the result of extratropical cyclones.

A tropical cyclone, on the other hand, is one that’s completely warm and moist throughout the entire storm. Tropical cyclones are known as warm-core storms, as the cyclone gathers its strength from the powerful thunderstorms around the eye—the eyewall—which in turn feed off of the warm water below. Air rapidly rises through the thunderstorms in the eyewall, leaving very low air pressure at the surface. If dry air, strong winds, or cool water disrupt the thunderstorms in the eyewall, the storm quickly weakens.

A subtropical storm is sort of in between the other two types of cyclones, existing as a cyclone that’s shed its cold/warm fronts and consists of a warm core that still has some cold air left in the upper levels of the atmosphere. When conditions are favorable, a majority of subtropical storms in the Atlantic will fully transition into tropical entities, as Alex did. If you ever find yourself in the path of a subtropical storm, you won’t notice much of a difference—the difference between subtropical and tropical is mostly a concern for meteorologists and hardcore weather buffs.

WHY DID ALEX FORM?

(Sea surface temperatures, in °C, for January 13, 2016. | Source: NOAA/ESRL/PSD)

A disturbance over the water needs three main ingredients in order to turn into a tropical cyclone: warm water, low wind shear, and ample moisture. In this case, there was very little wind shear over the eastern Atlantic Ocean, and the low that would become Alex managed to ingest enough tropical moisture from the south that it insulated the system from dry air to its north and west.

That left the issue of warm water. The water isn’t all that warm in the northeastern Atlantic Ocean even in the middle of the summer, let alone the middle of January. Water temperatures are far below the levels one would typically expect to sustain a hurricane, but there’s a catch. Sharp temperature differences between air at the surface and air in the upper levels led to strong instability, allowing air to rise very quickly through the atmosphere. According to the NHC, yesterday the air high in the atmosphere above the hurricane was -60°C, which is extremely cold. This strong vertical temperature gradient is compensating for the lack of warm water, allowing thunderstorms to blossom and permitting Alex to defy the odds and become a hurricane.

What does this storm say about this summer’s hurricane season? Not much. The ongoing El Niño in the eastern Pacific Ocean is expected to wear off by this summer, bringing along the potential for a more active hurricane season than we saw in 2015. Fortunately, however, Hurricane Alex isn’t an omen for storms to come. This historical oddity was a one-off event, and it’s something we’re unlikely to see again for many years. 

nextArticle.image_alt|e
Illustration by Mental Floss / Images: iStock
arrow
The Body
10 Facts About the Appendix
Illustration by Mental Floss / Images: iStock
Illustration by Mental Floss / Images: iStock

Despite some 500 years of study, the appendix might be one of the least understood structures in the human body. Here's what we know about this mysterious organ.

1. THE ANCIENT EGYPTIANS CALLED IT THE "WORM" OF THE BOWEL.

The human appendix is small, tube-shaped, and squishy, giving ancient Egyptians, who encountered it when preparing bodies for funerary rites, the impression of a worm. Even today, some medical texts refer to the organ as vermiform—Latin for "worm-like."

2. THE APPENDIX SHOWS UP IN LEONARDO DA VINCI’S DRAWINGS.

The earliest description of a human appendix was written by the Renaissance physician-anatomist Jacopo Berengario da Carpi in 1521. But before that, Leonardo da Vinci is believed to drawn the first depiction of the organ in his anatomical drawings in 1492. Leonardo claimed to have dissected 30 human corpses in his effort to understand the way the body worked from mechanical and physiological perspectives.

3. IT'S ABOUT THE SIZE OF A PINKY FINGER.

The appendix is a small pouch connected to the cecum—the beginning of the large intestine in the lower right-hand corner of your abdomen. The cecum’s job is to receive undigested food from the small intestine, absorb fluids and salts that remain after food is digested, and mix them with mucus for easier elimination; according to Mohamad Abouzeid, M.D., assistant professor and attending surgeon at NYU Langone Medical Center, the cecum and appendix have similar tissue structures.

4. CHARLES DARWIN THOUGHT IT WAS A VESTIGIAL ORGAN …

The appendix has an ill-deserved reputation as a vestigial organ—meaning that it allegedly evolved without a detectable function—and we can blame Charles Darwin for that. In the mid-19th century, the appendix had been identified only in humans and great apes. Darwin thought that our earlier ancestors ate mostly plants, and thus needed a large cecum in which to break down the tough fibers. He hypothesized that over time, apes and humans evolved to eat a more varied and easier-to-digest diet, and the cecum shrank accordingly. The appendix itself, Darwin believed, emerged from the folds of the wizened cecum without its own special purpose.

5. … BUT THE APPENDIX PROBABLY EVOLVED TO HELP IMMUNE FUNCTION.

The proximity and tissue similarities between the cecum and appendix suggest that the latter plays a part in the digestive process. But there’s one noticeable difference in the appendix that you can see only under a microscope. “[The appendix] has a high concentration of the immune cells within its walls,” Abouzeid tells Mental Floss.

Recent research into the appendix's connection to the immune system has suggested a few theories. In a 2015 study in Nature Immunology, Australian researchers discovered that a type of immune cells called innate lymphoid cells (ILCs) proliferate in the appendix and seem to encourage the repopulation of symbiotic bacteria in the gut. This action may help the gut recover from infections, which tend to wipe out fluids, nutrients, and good bacteria.

For a 2013 study examining the evolutionary rationale for the appendix in mammal species, researchers at Midwestern University and Duke University Medical Center concluded that the organ evolved at least 32 times among different lineages, but not in response to dietary or environmental factors.

The same researchers analyzed 533 mammal species for a 2017 study and found that those with appendices had more lymphatic (immune) tissue in the cecum. That suggests that the nearby appendix could serve as "a secondary immune organ," the researchers said in a statement. "Lymphatic tissue can also stimulate growth of some types of beneficial gut bacteria, providing further evidence that the appendix may serve as a 'safe house' for helpful gut bacteria." This good bacteria may help to replenish healthy flora in the gut after infection or illness.

6. ABOUT 7 PERCENT OF AMERICANS WILL GET APPENDICITIS DURING THEIR LIFETIMES.

For such a tiny organ, the appendix gets infected easily. According to Abouzeid, appendicitis occurs when the appendix gets plugged by hardened feces (called a fecalith or appendicolith), too much mucus, or the buildup of immune cells after a viral or bacterial infection. In the United States, the lifetime risk of getting appendicitis is one in 15, and incidence in newly developed countries is rising. It's most common in young adults, and most dangerous in the elderly.

When infected, the appendix swells up as pus fills its interior cavity. It can grow several times larger than its average 3-inch size: One inflamed appendix removed from a British man in 2004 measured just over 8 inches, while another specimen, reported in 2007 in the Journal of Clinical Pathology, measured 8.6 inches. People with appendicitis might feel generalized pain around the bellybutton that localizes on the right side of the abdomen, and experience nausea or vomiting, fever, or body aches. Some people also get diarrhea.

7. APPENDECTOMIES ARE ALMOST 100 PERCENT EFFECTIVE FOR TREATING APPENDICITIS.

Treatment for appendicitis can go two ways: appendectomy, a.k.a. surgical removal of the appendix, or a first line of antibiotics to treat the underlying infection. Appendectomies are more than 99 percent effective against recurring infection, since the organ itself is removed. (There have been cases of "stump appendicitis," where an incompletely removed appendix becomes infected, which often require further surgery.)

Studies show that antibiotics produce about a 72 percent initial success rate. “However, if you follow these patients out for about a year, they often get recurrent appendicitis,” Abouzeid says. One 2017 study in the World Journal of Surgery followed 710 appendicitis patients for a year after antibiotic treatment and found a 26.5 percent recurrence rate for subsequent infections.

8. AN INFECTED APPENDIX DOESN’T ACTUALLY BURST.

You might imagine a ruptured appendix, known formally as a perforation, being akin to the "chestbuster" scene in Alien. Abouzeid says it's not quite that dramatic, though it can be dangerous. When the appendix gets clogged, pressure builds inside the cavity of the appendix, called the lumen. That chokes off blood supply to certain tissues. “The tissue dies off and falls apart, and you get perforation,” Abouzeid says. But rather than exploding, the organ leaks fluids that can infect other tissues.

A burst appendix is a medical emergency. Sometimes the body can contain the infection in an abscess, Abouzeid says, which may be identified through CT scans or X-rays and treated with IV antibiotics. But if the infection is left untreated, it can spread to other parts of the abdomen, a serious condition called peritonitis. At that point, the infection can become life-threatening.

9. SURGEONS CAN REMOVE AN APPENDIX THROUGH A TINY INCISION.

In 1894, Charles McBurney, a surgeon at New York's Roosevelt Hospital, popularized an open-cavity, muscle-splitting technique [PDF] to remove an infected appendix, which is now called an open appendectomy. Surgeons continued to use McBurney's method until the advent of laparoscopic surgery, a less invasive method in which the doctor makes small cuts in the patient's abdomen and threads a thin tube with a camera and surgical tools into the incisions. The appendix is removed through one of those incisions, which are usually less than an inch in length.

The first laparoscopic appendectomies were performed by German physician Kurt Semm in the early 1980s. Since then, laparoscopic appendectomies have become the standard treatment for uncomplicated appendicitis. For more serious infections, open appendectomies are still performed.

10. AN APPENDIX ONCE POSTPONED A ROYAL CORONATION.

When the future King Edward VII of Great Britain came down with appendicitis (or "perityphlitis," as it was called back then) in June 1902, mortality rates for the disease were as high as 26 percent. It was about two weeks before his scheduled coronation on June 26, 1902, and Edward resisted having an appendectomy, which was then a relatively new procedure. But surgeon and appendicitis expert Frederick Treves made clear that Edward would probably die without it. Treves drained Edward's infected abscess, without removing the organ, at Buckingham Palace; Edward recovered and was crowned on August 9, 1902.

11. THE WORLD'S LONGEST APPENDIX MEASURED MORE THAN 10 INCHES.

On August 26, 2006, during an autopsy at a Zagreb, Croatia hospital, surgeons obtained a 10.24-inch appendix from 72-year-old Safranco August. The deceased currently holds the Guinness World Record for "largest appendix removed."

nextArticle.image_alt|e
iStock
arrow
science
Science Has a Good Explanation For Why You Can't Resist That Doughnut
iStock
iStock

Unless you’re one of those rare people who doesn’t like sweets, the lure of a glazed or powdered doughnut is often too powerful to resist. The next time you succumb to that second or third Boston cream, don’t blame it on weak willpower—blame it on your brain.

As the New Scientist reports, a Yale University study published in the journal Cell Metabolism provides new evidence that foods rich in both carbohydrates and fats fire up the brain’s reward center more than most foods. For the study, volunteers were shown pictures of carb-heavy foods (like candy), fatty foods (like cheese), and foods high in both (like doughnuts). They were then asked to bid money on the food they wanted to eat most, all while researchers measured their brain activity.

Not only were volunteers willing to pay more for doughnuts and similar foods, but foods high in carbs and fat also sparked far more activity in the striatum, the area of the brain where dopamine is released. (Chocolate is one of the foods most commonly associated with increases in dopamine, working in the same way as drugs like cocaine and amphetamines.)

Presented with these findings, researcher Dana Small theorized that the brain may have separate systems to assess fats and carbs. Modern junk foods that activate both systems at once may trigger a larger release of dopamine as a result.

This study doesn’t entirely explain why different people crave different foods, though. Much of it has to do with our habits and the foods we repeatedly gravitate towards when we want to feel happy or alleviate stress. Another study from 2015 found that certain treats associated with high levels of reward in the brain—like pizza, chocolate, chips, and cookies—were considered to be the most addictive foods (doughnuts didn’t make the top 20, though).

It's still possible to turn down foods that are bad for you, though. While many people try to improve their self-control, one of the most effective ways to avoid an undesired outcome is to remove the temptation completely. Free doughnuts in the break room? Stay far away.

[h/t New Scientist]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios