CLOSE
Original image
Nicole Steinmetz

Plant Virus Shows Potential as a Cancer Treatment

Original image
Nicole Steinmetz

The cowpea mosaic virus (CPMV) is made up of a potent center covered by a thin coating. The outer shell is harmless, but not useless: Researchers at Case Western Reserve University and Dartmouth University have found that exposure to tiny pieces of CPMV shell can prompt the immune system to begin attacking tumors.

The cowpea, also known as the black-eyed pea, is a bean-like plant that grows in Africa, Asia, Europe, and South America. Cowpeas infected with CPMV develop a patchy pattern on their leaves (hence the name). The virus only infects plants, so we’re safe, even when we get up close and personal with virus particles. 

Our immune systems are pretty good at nipping cancerous cells in the bud. But as tumors get larger, they can effectively shut off a person’s immune system, which allows cancer to continue to grow and spread. Researchers were looking for a way to give the immune system a good poke and startle it into working again. 

As it turns out, CPMV shells do this pretty well. "The cowpea virus-based nanoparticles act like a switch that turns on the immune system to recognize and fight against the tumor—as well as to remember it," said Nicole Steinmetz, assistant professor of biomedical engineering at Case Western Reserve and the study's co-author, in a press release.

Steinmetz and her colleagues administered microscopic shell particles to mice with lung cancer and melanoma. The treatment prompted an incredibly successful immune response, and several of the mice were declared cancer-free. 

The research team also applied CPMV shell particles to tumors in breast, ovarian, and colon tissue. Again, the reactivated immune response destroyed the tumors. It also was able to prevent metastasis—the spreading of tumors throughout the body.

"The particles are shockingly potent," added co-author Steven Fiering, a professor of microbiology and immunology at Dartmouth's Geisel School of Medicine. "They're easy to make and don't need to carry antigens, drugs, or other immunostimulatory agents on their surface or inside."

The treatment seems incredibly effective, and the side effects are minimal. This is not the case with most cancer treatments, which can often be as grueling for patients as the disease itself. 

The researchers published their findings in the journal Nature Nanotechnology. Their next steps will include trying to figure out just why and how the CPMV shells are so effective.

Original image
iStock
arrow
Live Smarter
Why You Might Not Want to Order Tea or Coffee On Your Next Flight
Original image
iStock

A cup of tea or coffee at 40,000 feet may sound like a great way to give yourself an extra energy boost during a tiring trip, but it might be healthier to nap away your fatigue—or at least wait until hitting ground to indulge in a caffeine fix. Because, in addition to being tepid and watery, plane brew could be teeming with germs and other harmful life forms, according to Business Insider.

Multiple studies and investigations have taken a closer look at airplane tap water, and the results aren’t pretty—or appetizing. In 2002, The Wall Street Journal conducted a study that looked at water samples taken from 14 different flights from 10 different airlines. Reporters discovered “a long list of microscopic life you don’t want to drink, from Salmonella and Staphylococcus to tiny insect eggs," they wrote.

And they added, "Worse, contamination was the rule, not the exception: Almost all of the bacteria levels were tens, sometimes hundreds, of times above U.S. government limits."

A 2004 study by the U.S. Environmental Protection Agency (EPA) found that water supplies on 15 percent of 327 national and international commercial aircrafts were contaminated to varying degrees [PDF]. This all led up to the 2011 Aircraft Drinking Water Rule, an EPA initiative to make airlines clean up. But in 2013, an NBC investigation found that at least one out of every 10 commercial U.S. airplanes still had issues with water contamination.

Find out how airplane water gets so gross, and why turning water into coffee or tea isn’t enough to kill residual germs by watching Business Insider’s video below.

[h/t Business Insider]

Original image
iStock
arrow
science
Scientists May Have Found the Real Cause of Dyslexia—And a Way to Treat It
Original image
iStock

Dyslexia is often described as trying to read letters as they jump around the page. Because of its connections to reading difficulties and trouble in school, the condition is often blamed on the brain. But according to a new study published in Proceedings of the Royal Society B, the so-called learning disability may actually start in the eyes.

As The Guardian reports, a team of French scientists say they've discovered a key physiological difference between the eyes of those with dyslexia and those without it. Our eyes have tiny light-receptor cells called rods and cones. The center of a region called the fovea is dominated by cones, which are also responsible for color perception.

Just as most of us have a dominant hand, most have a dominant eye too, which has more neural connections to the brain. The study of 60 people, divided evenly between those with dyslexia and those without, found that in the eyes of non-dyslexic people, the arrangement of the cones is asymmetrical: The dominant eye has a round, cone-free hole, while the other eye has an unevenly shaped hole. However, in people with dyslexia, both eyes have the same round hole. So when they're looking at something in front of them, such as a page in a book, their eyes perceive exact mirror images, which end up fighting for visual domination in the brain. This could explain why it's sometimes impossible for a dyslexic person to distinguish a "b" from a "d" or an "E" from a "3".

These results challenge previous research that connects dyslexia to cognitive abilities. In a study published earlier this year, people with the condition were found to have a harder time remembering musical notes, faces, and spoken words. In light of the new findings, it's unclear whether this is at the root of dyslexia or if growing up with vision-related reading difficulties affects brain plasticity.

If dyslexia does come down to some misarranged light-receptors in the eye, diagnosing the disorder could be as simple as giving an eye exam. The explanation could also make it easy to treat without invasive surgery. In the study, the authors describe using an LED lamp that blinks faster than the human eye can perceive to "cancel out" one of the mirror images perceived by dyslexic readers, leaving only one true image. The volunteers who read with it called it a "magic lamp." The researchers hope to further experiment with it to see see if it's a viable treatment option for the millions of people living with dyslexia.

[h/t The Guardian]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios