Original image

Scientists May Be Able to Recycle Used Organs

Original image

A pancreas is a terrible thing to waste, yet hundreds of the donated organs are thrown out each year. That may change: Scientists now say they've found a way to recycle the used organs into new pancreases.

A healthy pancreas helps its owner digest his or her food, and releases the chemicals that help regulate blood sugar. Unfortunately, many people don’t have healthy pancreases. More than a million Americans have been diagnosed with type 1 diabetes, a disease caused by a dysfunctional pancreas. But only a few of those people will get a new pancreas: only three out of every 10,000 people with type 1 diabetes will ever get a pancreas or pancreas cell transplant.

There are a few reasons for this. First, pancreases (or “pancreata,” to use the plural preferred by scientists) don’t grow on trees. The pool of donated pancreata is pretty small to begin with. Then there’s the fact that about 25 percent of these organs will be deemed defective and discarded. Lastly, organ transplant is currently a grueling and risky process. There’s a very real possibility that a person’s body will reject the new organ. To make matters worse, the drugs used to prevent that rejection are really hard on the body, and they have to be taken for the rest of a person’s life.

Two of these challenges—wasting donated organs and a lifetime of unpleasant drugs—may be close to solutions. Scientists from Wake Forest University Baptist Medical Center and elsewhere believe they’ve found a way to recycle donated pancreata that may also cut down on the need for rejection-prevention medication. Their findings were recently published in the Annals of Surgery.

The recycling begins with a process called decellularization, which literally removes an organ’s cells. The organs are washed with special mild detergents that strip out the cells while leaving the organ’s framework, or extracellular matrix, intact. Into this scaffolding, the researchers say, they can insert cells from the transplant patient. The result is a brand-new pancreas made largely from the patient’s own body, which eliminates the risk that the transplant will be rejected, thereby eliminating the need for anti-rejection drugs.

At this point, it’s all fairly theoretical. The researchers started with 25 real human pancreases, but the finished products were not implanted into people. The researchers did, however, run tests on the new pancreas structures to find out how they would affect a live immune system. Unlike organs taken directly from donors, the recycled pancreata cells seemed to have a calming effect on the immune system, which made it far more likely that they wouldn’t be rejected. 

Decellularization itself is not a new concept, but these researchers are among the first to show the process could be used to create whole human organs.

"The early results are encouraging," lead author Giuseppe Orlando said in a press release. "We believe this research represents the first critical step toward a fully human-derived artificial pancreas."

Original image
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
Bill Gates is Spending $100 Million to Find a Cure for Alzheimer's
Original image
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation

Not everyone who's blessed with a long life will remember it. Individuals who live into their mid-80s have a nearly 50 percent chance of developing Alzheimer's, and scientists still haven't discovered any groundbreaking treatments for the neurodegenerative disease [PDF]. To pave the way for a cure, Microsoft co-founder and philanthropist Bill Gates has announced that he's donating $100 million to dementia research, according to Newsweek.

On his blog, Gates explained that Alzheimer's disease places a financial burden on both families and healthcare systems alike. "This is something that governments all over the world need to be thinking about," he wrote, "including in low- and middle-income countries where life expectancies are catching up to the global average and the number of people with dementia is on the rise."

Gates's interest in Alzheimer's is both pragmatic and personal. "This is something I know a lot about, because men in my family have suffered from Alzheimer’s," he said. "I know how awful it is to watch people you love struggle as the disease robs them of their mental capacity, and there is nothing you can do about it. It feels a lot like you're experiencing a gradual death of the person that you knew."

Experts still haven't figured out quite what causes Alzheimer's, how it progresses, and why certain people are more prone to it than others. Gates believes that important breakthroughs will occur if scientists can understand the condition's etiology (or cause), create better drugs, develop techniques for early detection and diagnosis, and make it easier for patients to enroll in clinical trials, he said.

Gates plans to donate $50 million to the Dementia Discovery Fund, a venture capital fund that supports Alzheimer's research and treatment developments. The rest will go to research startups, Reuters reports.

[h/t Newsweek]

Eye Doctors Still Use This 100-Year-Old Test for Color Blindness

You may have seen them at your ophthalmologist's office: large circular diagrams made up of colored dots. People with normal vision are able to discern a number among the dots of contrasting colors. People who are color blind might see only a field of spots.

These elegant, deceptively modern drawings were published 100 years ago by a Japanese ophthalmologist, Shinobu Ishihara. Thanks to the designs' simplicity and diagnostic accuracy, the Ishihara test is still the most popular and efficient way to identify patients with color vision deficiencies.

Born in Tokyo in 1879, Ishihara studied medicine at the prestigious Tokyo Imperial University on a military scholarship, which required him to serve in the armed forces. After graduating in 1905, he worked for three years as a physician specializing in surgery in the Imperial Japanese Army, and then returned to the university for postgraduate studies in ophthalmology. In his research, Ishihara focused on identifying and recruiting soldiers with superior vision, thereby increasing the overall effectiveness of the military. And that became of prime importance to Japan beginning in 1914.

As World War I spread across Europe, Asia, and the Pacific, the Japanese army asked Ishihara to develop a better way to screen draftees for color vision problems. The most popular method at the time was the Stilling test, invented by German ophthalmologist Jakob Stilling in 1878 as the first clinical color vision test. (Previous tools had asked patients to identify the colors of wool skeins or illuminated lanterns—useful skills for sailors and railway conductors, but an imprecise method for diagnosing vision issues.)

"Though popular, 'the Stilling' retained a distinctly 19th-century flavor, more treatise-like and less diagnostically incisive," according to Eye magazine.

Shinobu Ishihara
Wellcome Images // CC BY 4.0

Japanese army officials requested a new diagnostic tool that was easier to administer and interpret. The test Ishihara began to develop was based, like Stilling's, on the principle of pseudo-isochromatism—a phenomenon in which two or more colors are seen as the same (or isochromatic) when they're actually different. A person with normal vision could easily see the difference, while people with red-green deficiency, the most common form of color blindness, would have difficulty distinguishing those two opposing colors. Those with blue-yellow color blindness, a less common type, would have a hard time discerning reds, greens, blues, or yellows.

Ishihara hand-painted circular designs comprised of small dots of different areas and colors so that variations in the design could be discerned only by color and not shape, size, or pattern. Hidden in the field of dots was a figure of a contrasting color that people with normal vision could see, while those with deficiencies could not. Other plates in the series were designed to show figures that would be visible only to people with deficiencies. When physicians displayed the diagrams, patients said or traced the visible figure within the circle without needing to use ambiguous color names, which standardized the possible results.

The earliest sets of Ishihara plates, produced in 1916, were reserved exclusively for the army's use and featured Japanese characters within the diagrams. In 1917, in an effort to sell the series internationally, Ishihara redesigned it with the now-familiar Arabic numerals and published a set of 16 plates as Tests for Colour Deficiency.

The tests were adopted throughout the world beginning in the early 1920s, and eventually grew into a set of 38 plates. But their popularity almost led to their undoing. Unauthorized publishers printed their own version of the plates to meet demand, throwing the accuracy of the diagnostic colors into doubt. "The plates have been duplicated along with an easily memorized key by cheap color processes in the tabloid press, and exposed in public places, reducing the fifth edition [of the collection] to a parlor game," one psychologist warned in the Journal of the Optical Society of America in 1943.

Despite those obstacles, the tests proved indispensable for both practicing physicians and researchers. Ishihara continued to refine the designs and improve the color accuracy of the images into the late 1950s, while he also served as the chair of the ophthalmology department and then dean of the medical school at Tokyo Imperial University. In addition to Tests for Colour Deficiency, he also published an atlas, textbook, lectures, and research studies on eye diseases. But he is remembered most for the iconic charts that seamlessly blend art and science.


More from mental floss studios