12 Facts About the Sense of Taste

iStock/m-imagephotography
iStock/m-imagephotography

A lot more than your tongue is involved in the process of tasting food. Taste is not only one of the most pleasurable of the five senses, but a surprisingly complex sense that science is beginning to understand—and manipulate. Here are 12 fascinating facts about your ability to taste.

1. Everyone has a different number of taste buds.

We all have several thousand taste buds in our mouths, but the number varies from person to person. The average range is between 2000 and 10,000. And taste buds are not limited to your tongue; They can be found in the roof and walls of your mouth, throat, and esophagus. As you age, your taste buds become less sensitive, which experts believe may be why foods that you don’t like as a child become palatable to you as an adult.

2. You taste with your brain.

The moment you bite into a slice of pie, your mouth seems full of flavor. But most of that taste sensation is happening in your brain. More accurately, cranial nerves and taste bud receptors in your mouth send molecules of your food to olfactory nerve endings in the roof of your nose. The molecules bind to these nerve endings, which then signal the olfactory bulb to send smell messages directly to two important cranial nerves, the facial nerve and the glossopharyngeal nerve, which communicate with a part of the brain known as the gustatory cortex.

As taste and nerve messages move further through the brain, they join up with smell messages to give the sensation of flavor, which feels as if it comes from the mouth.

3. You can’t taste well if you can’t smell.

When you smell something through your nostrils, the brain registers these sensations as coming from the nose, while smells perceived through the back of the throat activate parts of the brain associated with signals from the mouth. Since much of taste is odor traveling to olfactory receptors in your brain, it makes sense that you won’t taste much at all if you can’t smell. If you are unable to smell for reasons that include head colds, smoking cigarettes, side effects of medications, or a broken nose, olfactory receptors may either be too damaged, blocked, or inflamed to send their signals on up to your brain.

4. Eating sweet foods helps form a memory of a meal.

Eating sweet foods causes your brain to remember the meal, according to a 2015 study in the journal Hippocampus, and researchers believe it can actually help you control eating behavior. Neurons in the dorsal hippocampus, the part of the brain central to episodic memory, are activated when you eat sweets. Episodic memory is that kind that helps you recall what you experienced at a particular time and place. "We think that episodic memory can be used to control eating behavior," said study co-author Marise Parent, of the Neuroscience Institute at Georgia State. "We make decisions like 'I probably won't eat now. I had a big breakfast.' We make decisions based on our memory of what and when we ate."

5. Scientists can turn tastes on and off by manipulating brain cells.

Dedicated taste receptors in the brain have been found for each of the five basic tastes: sweet, sour, salty, bitter, and umami (savory). In 2015, scientists outlined in the journal Nature how they were able to turn specific tastes on or off in mice, without introducing food, by stimulating and silencing neurons in the brains. For instance, when they stimulated neurons associated with “bitter,” mice made puckering expressions, and could still taste sweet, and vice versa.

6. You can tweak your taste buds.

Most of us have had the experience of drinking perfectly good orange juice after brushing our teeth, only to have it taste more like unsweetened lemon juice. Taste buds, it turns out, are sensitive enough that certain compounds in foods and medicines can alter our ability to perceive one of the five common tastes. The foaming agent sodium lauryl/laureth sulfate in most toothpaste seems to temporarily suppress sweetness receptors. This isn't so unusual. A compound called cynarin in artichokes temporarily blocks your sweet receptors. Then, when you drink water, the cynarin is washed away, making your sweet receptors “wake up” so the water tastes sweet. A compound called miraculin, found in the herb Gymnema sylvestre, toys with your sweet receptors in a similar way.

7. The smell of ham can make your food “taste” saltier.

There’s an entire industry that concocts the tastes of the food you buy at the grocery store. Working with phenomena known as phantom aromas or aroma-taste interactions, scientists found that people associate “ham” with salt. So simply adding a subtle ham-like scent or flavor to a food can make your brain perceive it as saltier than it actually is. The same concept applies to the scent of vanilla, which people perceive as sweet.

8. Your taste buds prefer savory when you fly.

A study by Cornell University food scientists found that loud, noisy environments, such as when you’re traveling on an airplane, compromise your sense of taste. The study found that people traveling on airplanes had suppressed sweet receptors and enhanced umami receptors. The German airline Lufthansa confirmed that on flights, passengers ordered nearly as much tomato juice as beer. The study opens the door to new questions about how taste is influenced by more than our own internal circuitry, including our interactions with our environments.

9. Picky eaters may be “supertasters.”

If you’re a picky eater, you may have a new excuse for your extreme dislike of eggplant or sensitivity to the slightest hint of onion. You might be a supertaster—one of 25 percent of people who have extra papillae in your tongue. That means you have a greater number of taste buds, and thus more specific taste receptors.

10. Some of your taste preferences are genetic.

While genetics may not fully explain your love of the KFC Double Down or lobster ice cream, there may be code written into your DNA that accounts for your preference for sweet foods or your aversion to certain flavors. The first discovery of a genetic underpinning to taste came in 1931, when chemist Arthur Fox was working with powdered PTC (phenylthiocarbamide), and some of the compound blew into the air. One colleague found it to have a bitter taste, while Fox did not perceive that. They conducted an experiment among friends and family and found wide variation in how (and whether) people perceived the flavor of the PTC to be bitter or tasteless. Geneticists later discovered that the perception of PTC flavor (similar to naturally occurring compounds) is based in a single gene, TAS2R38, that codes for a taste receptor on the tongue. In a 2005 study, researchers at the Monell Chemical Senses Center found that the version of this gene also predicted a child's preference for sweet foods.

11. Your genes influence whether you think cilantro tastes like soap.

There may be no flavor more hotly debated or deeply loathed than the herb cilantro (also known as coriander). Entire websites, like IHateCilantro.com, complain about its “soapy” or “perfumy” flavor, while those who like it simply think it gives a nice kick to their salsa. Researchers at the consumer genetics company 23andMe identified two common genetic variants linked to people's “soap” perceptions. A follow-up study in a separate subset of customers confirmed the associations. The most compelling variant can be found within a cluster of olfactory receptor genes, which influence our sense of smell. One of those genes, OR6A2, encodes a receptor that is highly sensitive to aldehyde chemicals, which cilantro contains.

12. Sugar cravings have a biological basis.

Your urge for more hot fudge may have little to do with a lack of self-control. Scientists think that our yearning for sweets is a biological preference that may have been designed to ensure our survival. The liking for sweet tastes in our ancient evolution may have ensured the acceptance of sweet-tasting foods, such as breast milk and vitamin-rich fruits. Moreover, recent research suggests that we crave sweets for their pain-reducing properties.

Why Do We Get Shivers Up Our Spines?

iStock.com/martin-dm
iStock.com/martin-dm

Picture this: You're sitting on your couch in the dark alone, watching a scary movie. The killer is walking toward an unsuspecting victim, then suddenly jumps out at her. In that moment, the hairs on your body stand up, and you get a shiver down your spine. When you go for a walk on a crisp morning, the same thing happens. When the music swells during your favorite song, you get the shivers again, this time with the little goosebumps on your arms that appear when you get that sensation.

There's a good reason for shivers and goosebumps: they're your body's response to emotion or stress. We got this from our animal ancestors. When they were cold, the hair on their bodies would stand up—the movement of the arrector pili muscle would cause the skin to contract, raising each hair—to provide an extra layer of insulation. This response is also in play when animals feel threatened: their natural reaction is to try to look bigger than their attacker, so their skin and hair expand to play up that effect. The part of the brain called the hypothalamus is what controls this reaction.

So why do goosebumps—also known as cutis anserina or piloerection—appear, aside from the functional purpose of looking larger or creating insulation? It's because our emotions are also connected with the hypothalamus, so sometimes goosebumps are just our body reacting to our brain's signals of intense emotion.

When we feel things like love, fear, or sadness, the hypothalamus sends a signal to our bodies that produces adrenaline in our blood. The signal triggers the arrector pili muscles to contract, and then we have goosebumps caused by emotion. The sudden adrenaline rush may also cause sweaty palms, tears, increased blood pressure, or shivers.

When we listen to music and get shivers, it is a mixture of subjective emotions toward the music and physiological arousal. If we hear a song we get excited about, or a song that makes us sad, the hypothalamus reacts to the sudden change in emotion and we physically feel the shiver along our spine.

This article was republished in 2019.

10 Facts About the Lungs

iStock/pixelfit
iStock/pixelfit

Every cell in your body needs oxygen in order to function properly. Your lungs are obviously crucial in achieving this goal—once you take air into your lungs, oxygen enters the bloodstream and moves through your body. Each cell makes a trade, exchanging oxygen for carbon dioxide—which your bloodstream then transports back to the lungs. When you exhale, you’re actually expelling carbon dioxide (CO2), nitrogen, and water vapor.

So how does your body make this happen? Bronchial tubes connect your lungs to your throat and mouth. These are lined with tiny little hairs called cilia that move in wave-like patterns, which pushes mucus up your throat. At the base of the bronchial tubes are tiny air sacs that hold the air you breathe in, called alveoli. Your right lung has three balloon-like sections, called lobes, which are full of spongy tissue. Your left lung has only two lobes, to make room for the heart. They sit in a special membrane called the pleura, that separates your lungs from the wall of your chest. Altogether, your lungs are a highly efficient machine—and they do a lot more than you might think.

1. Taking in oxygen is only one of your lungs' most important jobs. 

Yes, you need oxygen to live, but if you didn’t expel the carbon dioxide in your lungs, you would die. Carbon dioxide acts as an acid in the body and is generated by muscle action, Wendie Howland, a nurse with Howland Health Consulting, tells Mental Floss. “Your body operates optimally at a fairly narrow pH range, and when you generate extra CO2 by, say, running up the stairs, you bring your pH into the normal range almost immediately by excreting CO2 by breathing deeply.” So exhaling that more toxic CO2 is as important as taking in oxygen.

2. Think of your lungs as big ol' buckets.

Rather than thinking of your lungs as big balloons, Cascari says, “Think of your lungs as buckets of blood with air bubbles going through them.” In fact, your lungs contain as much blood as the entire rest of your body, which is why your center of gravity is above your waist. They produce blood cells as well. Every time your heart beats, it sends an equal amount of blood to your lungs as it does everywhere else in your body. “It’s this incredible system that can respire—an exchange of gas from the air into the blood and the lungs—without leaking. The fact that that goes on day in day out for our whole life is pretty amazing,” he says.

3. Your lungs are huge.

Your lungs are one of your biggest organs, but you might be surprised to learn that if you spread out the surface area of the alveoli, the sacs where oxygen and blood interface, you could cover an entire tennis court, Schroeder says.

4. Without mucus, your lungs would dry up. 

You may not be a big fan of mucus when it’s clogging your chest or nose during a cold, but it’s a “highly underrated, powerful infection-fighting agent in your body with some pretty cool features," says Ray Casciari, a pulmonologist at St. Joseph Hospital in Orange, California. “It’s actually cleaner than blood,” Casciari reveals. “If you take bacteria and expose it to mucus, the mucus will stop the growth of the bacteria. Whereas blood will actually support the growth of the bacteria.” (In fact, researchers in laboratories often deliberately use blood to grow bacteria.) Your mucus is such an important protective agent that you’d die without it. “If you didn’t have mucus in your lungs, you would dehydrate, losing so much water through evaporation that you would die within minutes,” he says. On the other hand, too much mucus production is dangerous.

5. Whatever you inhale quickly goes from your lungs to your brain. 

In under seven seconds, to be precise. Because of your lungs’ enormous surface area and “its intimate relationship with blood vessels that surround it,” says Scott Schroeder, director of Pediatric Pulmonary Medicine at the Floating Hospital of Tufts Medical Center, an inhalation of smoke or a vaporized medicine can reach the brain very quickly.

6. Coughing isn't always bad for your lungs.

Even when you aren’t sick, a normal person coughs about 10 times per day, says Schroeder—whether due to a sticky piece of food, an allergen you accidentally inhale, or your own mucus generated by exercise.

7. Asthma isn't just one disease affecting lung function.

Asthma, which causes wheezing, coughing, and shortness of breath, is actually a number of different illnesses under one name, Schroeder says. The good news is that deaths due to asthma are very uncommon, and have decreased significantly over the last 20 years, he reports (with one notable exception—African-American men age 18–24). But it doesn’t affect everyone equally. Women are much more likely to develop asthma as adults than men, especially if they are overweight. And people in urban areas are more likely to suffer from asthma than those in rural areas, likely due to increased particulate matter in the air from car exhaust and industrial pollutants.

8. Exercise can make asthma—and your lung function—better.

Asthma is actually improved by cardiovascular exercise. Schroeder says there are no sports that people with asthma cannot participate in, “except scuba diving, but I don’t consider that a sport.”

9. You can get lung cancer even if you've never smoked.

“You can spend your whole life in a very clean environment, never having smoked, and still get lung cancer,” Casciari says. Not all lung cancer is caused by cigarette smoking (though the majority is). Casciari cites occupational exposure, radiation exposure, and potential genetic risk factors, although researchers are still exploring the role genetics play. “Folks tend to think of their lungs very little, and when they do, they think, ‘I don’t smoke, so I’m ok,’ but that’s not completely true.”

10. Breakthroughs in lung cancer treatments has improved survival rates. 

For decades, toxic chemotherapy has been the best medicine for treating lung cancer, but it comes with intense side effects. However, several new breakthroughs have recently improved outcomes for patients, says Casciari. Thoracic CT scans, for example, improve survival by 20 percent by providing earlier diagnosis and treatments. Furthermore, new minimally invasive surgery techniques have made recovery from lung cancer surgery much easier, with people being discharged on the same day of surgery. Finally, immunotherapies that target specific cancer markers and harness the immune system itself to fight cancer cells have improved outcomes—and decreased side effects—for lung cancer patients.

This story was first published in 2017.

SECTIONS

arrow
LIVE SMARTER