CLOSE
Original image
NASA/Ames

This Earth-Friendly Drone Is Made From Biodegradable Fungus

Original image
NASA/Ames

Drones can make useful tools for learning more about the environment, but in some cases they can upset the same ecosystems they’re being used to study. Now, a new type of drone is being made from biodegradable, eco-friendly materials.

The "biodrone" was designed by a team of students from Brown, Spelman, and Stanford Universities in collaboration with NASA’s Ames Research Center. The group’s leader, NASA biologist Lynn Rothschild, recently spoke with Discover magazine about the project. She says she got the idea from a previous drone crash that nearly yielded disastrous results: The 400-pound research device went missing off the Alaskan coast in 2013, but was luckily discovered by fisherman with its fuel tank still intact. Future incidents may not end so uneventfully, which is why Rothschild helped develop a drone that can crash with little environmental impact.

To construct the prototype, the team worked with the material science company Ecovative. The biodrone's frame is composed of a fungal root material called mycelium, which was placed in a mold where it consumed leaf and grass cuttings until it had completely filled out the mold's shape. The mycelium was then dried out at 180 to 200°F, leaving a lightweight chassis. That chassis was coated with cellulose acetate, which was then itself coated with a hydrophobic protein found in paper wasp saliva to make it waterproof. The propellers were molded from the same plastic found in biodegradable forks and knives. According to Discover, while a 100 percent biodegradable motor is still theoretical, one future possibility is a bacterial fuel cell used to provide electricity and power the propeller motors. Another potential addition is a camera made with ultra-thin silicon that dissolves in water, or electronics printed on sheets of cellulose acetate in dissolvable silver nanoparticle ink.

According to WIRED, these biodrones could also have applications on missions to Mars. By biogenerating a drone on Mars from a sample of cells, NASA would be saving both space and money on the trip there. Such a drone's biogenerative properties could also open up the possibility for one-way research missions, since there's no concern about retrieving toxic materials—instead of harming whatever environment it lands in, the drone could provide a fungus-flavored treat to creatures nearby. 

[h/t: Discover]

Original image
arrow
science
11-Year-Old Creates a Better Way to Test for Lead in Water
Original image

In the wake of the water crisis in Flint, Michigan, a Colorado middle schooler has invented a better way to test lead levels in water, as The Cut reports.

Gitanjali Rao, an 11-year-old seventh grader in Lone Tree, Colorado just won the 2017 Discovery Education 3M Young Scientist Challenge, taking home $25,000 for the water-quality testing device she invented, called Tethys.

Rao was inspired to create the device after watching Flint's water crisis unfold over the last few years. In 2014, after the city of Flint cut costs by switching water sources used for its tap water and failed to treat it properly, lead levels in the city's water skyrocketed. By 2015, researchers testing the water found that 40 percent of homes in the city had elevated lead levels in their water, and recommended the state declare Flint's water unsafe for drinking or cooking. In December of that year, the city declared a state of emergency. Researchers have found that the lead-poisoned water resulted in a "horrifyingly large" impact on fetal death rates as well as leading to a Legionnaires' disease outbreak that killed 12 people.

A close-up of the Tethys device

Rao's parents are engineers, and she watched them as they tried to test the lead in their own house, experiencing firsthand how complicated it could be. She spotted news of a cutting-edge technology for detecting hazardous substances on MIT's engineering department website (which she checks regularly just to see "if there's anything new," as ABC News reports) then set to work creating Tethys. The device works with carbon nanotube sensors to detect lead levels faster than other current techniques, sending the results to a smartphone app.

As one of 10 finalists for the Young Scientist Challenge, Rao spent the summer working with a 3M scientist to refine her device, then presented the prototype to a panel of judges from 3M and schools across the country.

The contamination crisis in Flint is still ongoing, and Rao's invention could have a significant impact. In March 2017, Flint officials cautioned that it could be as long as two more years until the city's tap water will be safe enough to drink without filtering. The state of Michigan now plans to replace water pipes leading to 18,000 households by 2020. Until then, residents using water filters could use a device like Tethys to make sure the water they're drinking is safe. Rao plans to put most of the $25,000 prize money back into her project with the hopes of making the device commercially available.

[h/t The Cut]

All images by Andy King, courtesy of the Discovery Education 3M Young Scientist Challenge.

Original image
iStock
arrow
Weird
Switzerland Flushes $1.8 Million in Gold Down the Sewer Every Year
Original image
iStock

Switzerland has some pretty valuable sewer systems. As Bloomberg reports, scientists have discovered around $1.8 million worth of gold in the country's wastewater, along with $1.7 million worth of silver.

Scientists at the Swiss Federal Institute of Aquatic Science and Technology examined sewage sludge and effluents, or discharged liquid waste, from 64 water treatment plants and major Swiss rivers. They did this to assess the concentrations of various trace elements, which are "increasingly widely used in the high-tech and medical sectors," the scientists explained in a press statement. "While the ultimate fate of the various elements has been little studied to date, a large proportion is known to enter wastewater."

The study, which was recently published online in the journal Environmental Science & Technology, revealed that around 94 pounds of gold makes its way through Switzerland's sewage system each year, along with 6600 pounds of silver and high concentrations of rare metals like gadolinium and niobium. For the most part, these metals don't harm the environment, researchers say.

With gold and silver quite literally flowing through their sewers, is there any way that Switzerland could turn their wastewater into wealth? Scientists are skeptical: "The recovery of metals from wastewater or sludge is scarcely worthwhile at present, either financially or in terms of the amounts which could be extracted," the release explains.

However, in the southern canton of Ticino, which is home to several gold refineries, the "concentrations of gold in sewage sludge are sufficiently high for recovery to be potentially worthwhile," they conclude.

Switzerland is famous for its chocolate, watches, and mountains, but it's also home to major gold refineries. On average, around 70 percent of the world's gold passes through Switzerland every year—and judging from the looks of it, much of it goes down the drain. As for the sewer silver, it's a byproduct of the chemical and pharmaceutical industry, which is a cornerstone of Switzerland's economy.

[h/t Bloomberg]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios