CLOSE
istock
istock

Everybody Blames Everyone Else For Distracted Walking, Study Finds

istock
istock

According to a recent study [PDF] by the American Academy of Orthopaedic Surgeons and polling firm Ipsos Public Affairs, 78 percent of U.S. adults believe distracted walking behaviors like talking on the phone, listening to music, or texting while walking are a “serious issue.” But only 29 percent admit to walking while distracted themselves. It’s easier to pick up on the distracted behaviors of others, it seems, than to notice them in ourselves—the study also found that 74 percent of the people surveyed believed “other people” were the ones with the distraction problem. 

Whether or not you’re what the AAOS calls a “digital deadwalker”—someone too plugged into their mobile device to notice their surroundings—the AAOS encourages people to pay more attention to what they’re doing as they walk. While most young people are resilient enough to bounce back after bumping into someone, older people can suffer real injuries from a collision, and the AAOS study found that women aged 55 and over were most likely to be seriously injured after a distracted walking incident.

While it seems the AAOS is primarily interested in discouraging distracted walking (they go so far as to suggest stepping to the side of the street if you want to talk at all), the study also dug up some interesting stats on regional pedestrian habits. New York City, it seems, is most likely to see distracted walking as a serious issue, while Seattle residents are the most cavalier about the issue. New Yorkers are also, apparently, the most likely to own up to being distracted walkers themselves.

The AAOS recognizes that distracted walking might not sound like a real problem—and, in fact, many of the people surveyed thought the issue was “funny” or just “embarrassing in a silly way”—but they claim there can be real dangers involved. "The American Academy of Orthopaedic Surgeons urges pedestrians to avoid musculoskeletal and other injuries by engaging with their surroundings—drivers, bikers, other walkers and obstacles," Alan Hilibrand, orthopaedic surgeon and AAOS spokesperson explained. "Many of us simply need to force ourselves to set down our devices and focus on what's in front of and around us. This will ensure that we safely arrive at our destination, during this busy holiday season and throughout the year." 

[h/t: Eureka Alert!]

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios