CLOSE
howmanypeopleareinspacerightnow.com
howmanypeopleareinspacerightnow.com

Who's in Space Right Now?

howmanypeopleareinspacerightnow.com
howmanypeopleareinspacerightnow.com

It's easy to forget that, right now, there are humans in space. The advent of the continuously-crewed International Space Station has made this routine, but it still blows my mind that, as of this writing, six people are in space. If you're curious about who's in space, or where they are, here are some resources to help you keep tabs on our spacefaring friends.

1. How Many People are in Space Right Now?

A single-serving website, howmanypeopleareinspacerightnow.com gives you the answer, which is currently six. It also lists the specifics below, ranking crew members by their number of days in space, and links to profile pages on their space agencies' sites.

The site also has an app for iOS, with various added features, including push notifications when the number changes. The website is free; the app isn't.

2. Current Position of the ISS

If you're curious where the ISS is (and as of this writing, it's the only craft hosting humans in space), the ISS AstroViewer has you covered. It shows a live view of what the ISS would see, looking straight down at the earth, plus a track view showing the projected track of the station in its orbit (along with day/night bands).

An extra-cool feature is the Observation page, which helps you figure out times when the ISS will be overhead (or at least visible), along with relative brightness.

See also: Spot the Station, which can text you when the station approaches!

3. Live ISS View on UStream

Live, streaming ISS video! Of course, when I first tuned in, I got a blue screen. NASA explains (emphasis added):

Live video from the International Space Station includes internal views when the crew is on-duty and Earth views at other times. The video is accompanied by audio of conversations between the crew and Mission Control. This video is only available when the space station is in contact with the ground. During "loss of signal" periods, viewers will see a blue screen. Since the station orbits the Earth once every 90 minutes, it experiences a sunrise or a sunset about every 45 minutes. When the station is in darkness, external camera video may appear black, but can sometimes provide spectacular views of lightning or city lights below.

Go check out what's on, or just stream some NASA TV instead.

4. SpaceX on Livestream

If you want to keep track of SpaceX launches and other events, they have a LiveStream channel. If you subscribe, the app can notify you when an event is coming up!

5. Use IFTTT to Be Notified About Launches

The If This Then That (IFTTT) app allows you to create all sorts of simple programmatic workflows, known as "recipes." My favorite is a recipe that notifies you when an astronaut enters space! (There's also one for when astronauts leave space.)

IFTTT is free, and works on a wide variety of devices and operating systems. Learn more about IFTTT if you haven't used it before.

Related: an API (Application Programming Interface) that provides this data, so programmers can make services based on it.

nextArticle.image_alt|e
Keystone/Hulton Archive/Getty Images
arrow
Space
Were You Meant to Be an Astronaut? Try Passing NASA's Project Mercury Intelligence Test
From left: Wally Schirra, Deke Slayton, Gus Grissom, Christopher Craft of the Mercury Operations Division, Gordon Cooper, Scott Carpenter, John Glenn, and Alan Shepard.
From left: Wally Schirra, Deke Slayton, Gus Grissom, Christopher Craft of the Mercury Operations Division, Gordon Cooper, Scott Carpenter, John Glenn, and Alan Shepard.
Keystone/Hulton Archive/Getty Images

In 1958, NASA launched Project Mercury, its first manned space program. To have a manned space program, of course, it had to have astronauts. The men who would take part in the six Mercury flights were the first of their kind—in fact, the project even introduced the word "astronaut" as the term for American space explorers.

How did NASA choose the men for the team? Through a rigorous battery of tests, according to Popular Science, that measured their physical, psychological, and intellectual fitness for the job. The magazine recently recreated a small subset of those tests that you can take to see just how fit you might have been for the project.

The five tests Popular Science excerpts are only a fraction of what finalists had to endure. Out of 508 military pilots initially screened for inclusion, NASA hoped to find six astronauts who were the healthiest, smartest, most committed, and most psychologically stable men they could locate. After months of testing, they had such a hard time narrowing it down that they ended up choosing seven instead. Here’s how NASA describes just a small sliver of the process:

In addition to pressure suit tests, acceleration tests, vibration tests, heat tests, and loud noise tests, each candidate had to prove his physical endurance on treadmills, tilt tables, with his feet in ice water, and by blowing up balloons until exhausted. Continuous psychiatric interviews, the necessity of living with two psychologists throughout the week, and extensive self-examination through a battery of 13 psychological tests for personality and motivation, and another dozen different tests on intellectual functions and special aptitudes—these were all part of the week of truth.

In the end, seven were left: Alan Shepard, John Glenn, Gus Grissom, Scott Carpenter, Gordon Cooper, Wally Schirra, and Deke Slayton. Could you have been one of them? Well, you may not be able to test out your endurance in a pressure suit, but you can take a few of the psychological tests, including ones on spatial visualization, mechanical comprehension, hidden figures, progressive matrices, and analogies.

To test your skills, head over to our pals at Popular Science.

nextArticle.image_alt|e
Lawrence Livermore National Laboratory, Wikimedia Commons // CC BY-SA 3.0
arrow
technology
7 Giant Machines That Changed the World—And 1 That Might
Lawrence Livermore National Laboratory, Wikimedia Commons // CC BY-SA 3.0
Lawrence Livermore National Laboratory, Wikimedia Commons // CC BY-SA 3.0

From a 17-mile-long particle accelerator to a football-field–sized space observatory, here are seven massive machines that have made an equally huge impact on how we build, how we observe our universe, and how we lift rockets into space. We've also included a bonus machine: a technological marvel-to-be that may be just as influential once it's completed.

1. LARGE HADRON COLLIDER

Large Hadron Collider
Carlo Fachini, Flickr // CC BY-ND 2.0

The Large Hadron Collider, a particle accelerator located at CERN outside of Geneva, Switzerland, is the largest machine in the world: It has a circumference of almost 17 miles and took around a decade to build. The tubes of the LHC are a vacuum; superconducting magnets guide and accelerate two high-energy particle beams, which are moving in opposite directions, to near-light-speed. When the beams collide, scientists use the data to find the answers to some of the most basic questions of physics and the laws that govern the universe we live in.

Since the LHC started up in 2008, scientists have made numerous groundbreaking discoveries, including finding the once-theoretical Higgs boson particle—a.k.a. the "God" particle—which helps give other particles mass. Scientists had been chasing the Higgs boson for five decades. The discovery illuminates the early development of the universe, including how particles gained mass after the Big Bang. Scientists are already working on the LHC's successor, which will be three times its size and seven times more powerful.

2. CRAWLER-TRANSPORTER ROCKET MOVERS

Built in 1965, NASA's crawler-transporters are two of the largest vehicles ever constructed: They weigh 2400 tons each and burn 150 gallons of diesel per mile. In contrast, the average semi truck gets roughly 6.5 miles per gallon. The vehicles' first job was to move Saturn V rockets—which took us to the moon and measured 35 stories tall when fully constructed—from the massive Vehicle Assembly Building (the largest single-room building in the world) to the launch pad at Cape Canaveral. The 4.2-mile trip was a slow one; the transporters traveled at a rate of 1 mph to ensure the massive rockets didn't topple over. Without a vehicle to move rockets from the spot they were stacked to the launch pad, we never could have gotten off the ground, much less to the moon.

After our moon missions, the crawler-transporters were adapted to service the Space Shuttle program, and moved the shuttles from 1981 to 2003. Since the retirement of the orbiters, these long-serving machines are once again being repurposed to transport NASA's new Space Launch System (SLS), which, at 38 stories tall, will be the biggest rocket ever constructed when it's ready, hopefully in a few years (the timeline is in flux due to budgetary issues).

3. NATIONAL IGNITION FACILITY

National Ignition Facility (NIF) target chamber
Lawrence Livermore National Security, Wikimedia Commons // CC BY-SA 3.0

Three football fields could fit inside the National Ignition Facility, which holds the largest, most energetic, and most precise laser in the world (it also has the distinction of being the world's largest optical instrument). NIF—which took about a decade to build and opened in 2009—is located at the Lawrence Livermore National Laboratory in Livermore, California. Its lasers are used to create conditions not unlike those within the cores of stars and giant planets, which helps scientists to gain understanding about these areas of the universe. The NIF is also being used to pursue the goal of nuclear fusion. If we can crack the code for this reaction that powers stars, we'll achieve unlimited clean energy for our planet.

4. BERTHA THE TUNNEL BORER

When Seattle decided it needed a giant tunnel to replace an aging highway through the middle of the city, the city contracted with Hitachi Zosen Corporation to build the biggest tunnel boring machine in the world to do the job. The scope of Bertha's work had no precedent in modern-day digging, given the dense, abrasive glacial soil and bedrock it had to chew through.

In 2013, Bertha—named after Bertha Knight Landes, Seattle's first female mayor—was tasked with building a tunnel that would be big enough to carry four lanes of traffic (a two-lane, double-decker road). Bertha needed to carve through 1.7 miles of rock, and just 1000 feet in, the 57-foot, 6559-ton machine ran into a steel pipe casing that damaged it. Many predicted that Bertha was doomed, but after a massive, on-the-spot repair operation by Hitachi Zosen that took a year-and-a-half, the borer was up and running again.

In April 2017, Bertha completed its work, and engineers started the process of dismantling it; its parts will be used in future tunnel boring machines. Bertha set an example for what is possible in future urban tunnel work—but it's unlikely that tunnel boring machines will get much bigger than Bertha because of the sheer weight of the machine and the amount of soil it can move at once. Bertha's tunnel is scheduled to open in 2019.

5. INTERNATIONAL SPACE STATION

international space station
NASA

The international space station is a highly efficient machine, equipped with instrumentation and life support equipment, that has kept humans alive in the inhospitable environment of low-Earth orbit since November 2, 2000. It's the biggest satellite orbiting the Earth made by humans. The major components were sent into space over a two-year period, but construction has slowly continued over the last decade, with astronauts adding the Columbus science laboratory and Japanese science module. The first module, Zarya, was just 41.2 feet by 13.5 feet; now, the ISS is 356 feet by 240 feet, which is slightly larger than a football field. The station currently has about 32,333 cubic feet of pressurized volume the crew can move about in. That's about the same area as a Boeing 747 (though much of the ISS's space is taken up by equipment). The U.S.'s solar panels are as large as eight basketball courts.

From the space station, scientists have made such important discoveries as what extended zero-G does to the human body, where cosmic rays come from, and how protein crystals can be used to treat cancer. Though NASA expects the most modern modules of the ISS to be usable well into the 2030s, by 2025 the agency may begin "transitioning" much of its ISS operations—and costs—to the private sector [PDF] with an eye on expanding the commercial potential of space.

6. LIGO GRAVITATIONAL WAVE DETECTOR

The Laser Inferometer Gravitational-Wave Observatory (LIGO) is actually made up of four different facilities—two laboratories and two detectors located 2000 miles apart, in Hanford, Washington, and Livingston, Louisiana. The detectors, which took about five years to build and were inaugurated in 1999, are identical L-shaped vacuum chambers that are about 2.5 miles long and operate in unison. The mission of these machines is to detect ripples in the fabric of spacetime known as gravitational waves. Predicted in 1915 by Einstein's theory of general relativity, gravitational waves were entirely theoretical until September 2015, when LIGO detected them for the first time. Not only did this provide further confirmation of general relativity, it opened up entirely new areas of research such as gravitational wave astronomy. The reason the two detectors are so far from each other is to reduce the possibility of false positives; both facilities must detect a potential gravitational wave before it is investigated.

7. ANTONOV AN-225 MRIYA PLANE

Antonov An-225 in Paramaribo
Andrew J. Muller, Wikimedia Commons // CC BY-SA 4.0

The Russians originally had a rival to the U.S. Space Shuttle program: a reusable winged spacecraft of their own called the Buran—and in the 1980s, they developed the AN-225 Mriya in order to transport it. With a wingspan the size of the Statue of Liberty, a 640-ton weight, six engines, and the ability to lift into the air nearly a half-million pounds, it's the longest and heaviest plane ever built. Mriya first flew in 1988, and since the Buran was mothballed in 1990 after just one flight (due to the breakup of the Soviet Union rather than the plane's capabilities), the AN-225 has only been used sparingly.

The monster plane has inspired new ideas. In 2017, Airspace Industry Corporation of China signed an agreement with Antonov, the AN-225's manufacturer, to built a fleet of aircraft based on the AN-225's design that would carry commercial satellites on their backs and launch them into space. Currently, virtually all satellites are launched from rockets. Meanwhile, Stratolaunch, a company overseen by Microsoft co-founder Paul Allen, is building a plane that will be wider (but not longer) than Mriya. The giant plane will carry a launch vehicle headed for low-Earth orbit.

BONUS: 10,000-YEAR CLOCK

This forward-thinking project, funded by Amazon and Blue Origin founder Jeff Bezos, focuses on reminding people about their long-term impact on the world. Instead of a traditional clock measuring hours, minutes, and seconds, the Clock of the Long Now measures times in years and centuries. The clock, which will be built inside a mountain on a plot of land in western Texas owned by Bezos, will tick once per year, with a century hand that advances just once every 100 years. The cuckoo on the clock will emerge just once per millennium. Construction began on the clock in early 2018. When this massive clock is completed—timeline unknown—it will be 500 feet high. What will be the impact of this one? Only the people of the 120th century will be able to answer that question.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios