CLOSE

Soft Cube Robots Can Jump 2.5 Times Their Height

A new robot prototype from MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) wants to roll and bounce its way across terrain that would stymie even fancy humanoid ‘bots

The autonomous cubes are covered in a soft silicone and weigh less than half a pound. The robotic cubes can hurl themselves into the air by using spring-loaded metal loops called “tongues.” A 3-inch-wide cube can jump 8 inches into the air, or more than twice its height. The soft exterior allows the cube to travel farther than a hard exterior would (because it bounces) causing it to double its distance. 

The jumping cubes are described in a paper presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) [PDF] in October. 

Scientists and engineers at MIT and elsewhere are working on a whole host of robots that can move over varied terrain and deal with inevitable falls, in the hopes that these automated task masters can one day be sent into disaster zones and treacherous locations (like Mars) to collect data, perform tasks, and perhaps build new structures. The CSAIL team hopes to give these cube-bots greater jumping power and equip them with cameras so they can be used to explore remote areas and rocky terrain. 

[h/t: Popular Science]

nextArticle.image_alt|e
The North Face
arrow
Design
The North Face's New Geodesic Dome Tent Will Protect You in 60 mph Wind
The North Face
The North Face

You can find camping tents designed for easy set-up, large crowds, and sustainability, but when it comes to strength, there’s only so much abuse a foldable structure can take. Now, The North Face is pushing the limits of tent durability with a reimagined design. According to inhabitat, the Geodome 4 relies on its distinctive geodesic shape to survive wind gusts approaching hurricane strength.

Instead of the classic arching tent structure, the Geodome balloons outward like a globe. It owes its unique design to the five main poles and one equator pole that hold it in place. Packed up, the gear weighs just over 24 pounds, making it a practical option for car campers and four-season adventurers. When it’s erected, campers have floor space measuring roughly 7 feet by 7.5 feet, enough to sleep four people, and 6 feet and 9 inches of space from ground to ceiling if they want to stand. Hooks attached to the top create a system for gear storage.

While it works in mild conditions, the tent should really appeal to campers who like to trek through harsher weather. Geodesic domes are formed from interlocking triangles. A triangle’s fixed angles make it one of the strongest shapes in engineering, and when used in domes, triangles lend this strength to the overall structure. In the case of the tent, this means that the dome will maintain its form in winds reaching speeds of 60 mph. Meanwhile, the double-layered, water-resistant exterior keeps campers dry as they wait out the storm.

The Geodome 4 is set to sell for $1635 when it goes on sale in Japan this March. In the meantime, outdoorsy types in the U.S. will just have to wait until the innovative product expands to international markets.

[h/t inhabitat]

nextArticle.image_alt|e
Jonathan How, MIT
arrow
technology
New MIT Technology to Help Drones Dodge Obstacles May Make Deliveries Easier
Jonathan How, MIT
Jonathan How, MIT

New technology developed by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may help drones dodge collisions as they fly, making things like drone pizza delivery a whole lot more plausible on a large scale.

Whether you’re a human or a drone, moving through a city always involves a certain amount of uncertainty. Will that light turn green as you approach? Will a pedestrian bump into you? Will a pigeon fly in your face? Will there be a sudden road closure for a parade, or a newly installed crane at a construction site? And if there’s one thing that machines tend to be bad at, it’s dealing with uncertainty. For a fast-flying drone, navigating with a static map just won’t cut it in the real world.

So CSAIL researchers created NanoMap, a new system that can model uncertainty, taking into account that, as a drone flies, the conditions around it might change. The technology helps the drone plan for the fact that it probably doesn’t know precisely where it is in relation to everything else in the world. It spends less time calculating the perfect route around an obstacle, relying instead on a more general idea of where things are and how to avoid them, allowing it to process and avoid potential collisions more quickly.

It features depth sensors that constantly measure the distance between the drone and the objects around it, creating a kind of image for the machine of where it has been and where it is going. “It’s kind of like saving all of the images you’ve seen of the world as a big tape in your head,” MIT researcher Pete Florence explains in a press release. “For the drone to plan motions, it essentially goes back into time to think individually of all the different places that it was in.”

In testing, the NanoMap system allowed small drones to fly through forests and warehouses at 20 miles per hour while avoiding potential collisions with trees and other obstacles.

The project was funded in part by the Department of Defense’s DARPA, so it could be used as part of military missions, but it would also be helpful for any kind of drone-based delivery—whether it’s ferrying relief supplies to combat zones or your latest Amazon Prime package.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios