CLOSE

Paralyzed Man Mentally Controls His Arms With Surgical Implants

Thanks to an electrical implant in his brain, a paralyzed man was able to successfully move his arm and hand using his own brain signals. The Case Western Reserve University scientists behind the test say it marks the first time that signals originating in the brain have been redirected to electrodes in someone’s arm to restore movement. 

The project started nine months ago, when surgeons inserted two bunches of silicon electrodes called Utah arrays (pictured above) into the volunteer’s motor cortex. The wires were threaded through metal ports attached to the skull and hooked up to computers that could interpret his brain signals. These signals were then directed to the volunteer’s right arm and hand where doctors had implanted electrodes that responded to his impulses by causing certain muscles to contract. This is known as functional electrical stimulation, or FES, and it allowed the volunteer to move his shoulder, elbow, and wrist despite being paralyzed.

Similar brain-implant studies have been done in the past, including ones that have allowed subjects to control computer cursors and robotic arms. Last year, a man with a partially paralyzed arm was able to successfully open and close his hand using electrodes placed on the outside of his limb. The latest test took this idea to the next level by using surgically implanted electrodes to help restore movement in a fully paralyzed arm. 

Though the results represent a huge breakthrough for people with paralysis, the technology still has a long way to go. The volunteer’s arm muscles had atrophied from being paralyzed for so long, causing his movements to be rough and awkward. But when he used the brain implants to control a simulation of his arm on a screen, scientists say his virtual performance was pretty much perfect. The project is a vital step towards technology that can transmit signals from brain implants to internal electrodes wirelessly. Though it's a far way off, the ultimate goal is a system that grants full mobility to paralyzed individuals.

[h/t: MIT Technology Review]

Original image
iStock
arrow
Medicine
The World's First VR Brain Surgery Is Here
Original image
iStock

A lot of consumers are focused on virtual reality as a means of immersing themselves in games or traveling to exotic locales, but the technology holds some incredible potential as a learning tool. One recent—and graphic—example is VR brain surgery, which allows viewers to examine the amygdala like they never thought possible.

In the experience, which was produced and overseen by Fundamental VR at the Royal London Hospital, users will be able to follow along with surgeons as a patient is wheeled into the operating room and undergoes a real neurosurgical procedure to repair two aneurysms (balloon-like bulges in an artery that can rupture). Cameras installed in the OR and GoPro units on the surgeons provide a first person-perspective; you can also switch to the POV of the patient as instruments enter and exit your field of view.

The idea was embraced by surgeons at Royal London, who see it as having the potential to be a valuable training tool for neurosurgeons by mimicking "hands on" experience. Although the footage is best seen using a VR headset, you can get a feel for the experience in the YouTube footage below. Did we mention it's very, very graphic?

More sophisticated versions of the program—including tactile feedback for users—are expected to be implemented in Fundamental VR's surgical training programs in the future. Currently, programs like Surgical Navigation Advanced Platform (SNAP) are being used at major institutions like Stanford University and University of California, Los Angeles to map the brain prior to incision.

If this whets your appetite for witnessing brain operation footage, don't forget we filmed and broadcast a live brain surgery in partnership with National Geographic. You can still check it out here.

[h/t Wired]

Original image
iStock
arrow
Health
How Dangerous Is a Concussion?
Original image
iStock

It's not football season, but the game is still making headlines: In a new study published in the Journal of the American Medical Association, neuropathologist Ann McKee and her colleagues examined the brains of 111 N.F.L. players and found 110 of them to have the degenerative disease chronic traumatic encephalopathy (CTE).

The condition has been linked to repeated blows to the head—and every year in the U.S., professional and novice athletes alike receive between 2.5 and 4 million concussions. This raises the question: What happens to the human brain when we get a concussion or suffer a hard blow to the head, and how dangerous are these hits to our long-term health?

Expert Clifford Robbins explains in the TED-Ed video below:

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios