CLOSE
Chris McGrath, Getty Images
Chris McGrath, Getty Images

Read Oliver Sacks’s Academic Work for Free

Chris McGrath, Getty Images
Chris McGrath, Getty Images

Renowned neuroscientist and author Oliver Sacks passed away in his New York City home this summer at age 82, but his legacy of empathy will live on. In honor of Sacks’s life and work, the science publisher Elsevier will make a selection of his academic papers accessible for free beginning December 1.

After completing his studies in his native England, Sacks came to the U.S. and began a career as a researcher. He soon learned that research was not for him. “I lost samples,” he said in a 2005 interview. “I broke machines. Finally they said to me, ‘Sacks, you’re a menace. Get out. Go see patients.’” 

And he did. Sacks saw his patients through a lens of curiosity and care—and he wrote about them, bringing their stories and lives to the public. Each of his “neurological novels,” as he called them, invited viewers into the experiences and struggles of his patients. His unique perspective and lyrical narratives made books like The Man Who Mistook His Wife for a Hat and Awakenings popular bestsellers, and many were adapted for stage and screen. 

The neuroscientist defied categorization and specialization in his work, instead pursuing a huge range of subjects, including hallucinations, amnesia, swimming, pre-Columbian history, and ferns. 

Sacks was beloved for his contributions to both science and literature. The New York Times called him “the poet laureate of neuroscience.” His list of honors and recognitions is lengthy. Queen Elizabeth II appointed him Commander of the British Empire. Sacks even had an asteroid named after him: 84928 Oliversacks.

By the end of his life, Dr. Sacks was receiving about 10,000 fan letters a year, according to The New York Times. “I invariably reply to people under 10, over 90, or in prison,” he said. 

An interviewer once asked Sacks how he would like to be remembered. “I would like it to be thought that I had listened carefully to what patients and others have told me,” he said, “that I’ve tried to imagine what it was like for them, and that I tried to convey this. And, to use a biblical term,” he added, “bore witness.” To that end, among those papers is a letter written to the medical journal The Lancet condemning the treatment of prisoners in Guantanamo Bay.

nextArticle.image_alt|e
iStock
arrow
science
Why Is Your First Instinct After Hurting Your Finger to Put It in Your Mouth?
iStock
iStock

If you close your fingers in a car door or slam your funny bone into a wall, you might find your first reaction is to suck on your fingers or rub your elbow. Not only is this an instinctive self-soothing behavior, it's a pretty effective technique for temporarily calming pain signals to the brain.

But how and why does it work? To understand, you need to know about the dominant theory of how pain is communicated in the body.

In the 17th century, French scientist and philosopher René Descartes proposed that there were specific pain receptors in the body that "rang a bell in the brain" when a stimulus interacted with the body, Lorne Mendell, a professor of neurobiology and behavior at Stony Brook University in New York, tells Mental Floss. However, no study has effectively been able to identify receptors anywhere in the body that only respond to painful stimuli.

"You can activate certain nerve fibers that can lead to pain, but under other circumstances, they don't," Mendell says. In other words, the same nerve fibers that carry pain signals also carry other sensations.

In 1965, two researchers at MIT, Patrick Wall and Ronald Melzack, proposed what they called the gate control theory of pain, which, for the most part, holds up to this day. Mendell, whose research focuses on the neurobiology of pain and who worked with both men on their pain studies, explains that their research showed that feeling pain is more about a balance of stimuli on the different types of nerve fibers.

"The idea was that certain fibers that increased the input were ones that opened the gate, and the ones that reduced the input closed the gate," Mendell says. "So you have this idea of a gate control sitting across the entrance of the spinal cord, and that could either be open and produce pain, or the gate could be shut and reduce pain."

The gate control theory was fleshed out in 1996 when neurophysiologist Edward Perl discovered that cells contain nociceptors, which are neurons that signal the presence of tissue-damaging stimuli or the existence of tissue damage.

Of the two main types of nerve fibers—large and small—the large fibers carry non-nociceptive information (no pain), while small fibers transmit nociceptive information (pain).

Mendell explains that in studies where electric stimulation is applied to nerves, as the current is raised, the first fibers to be stimulated are the largest ones. As the intensity of the stimulus increases, smaller and smaller fibers get recruited in. "When you do this in a patient at low intensity, the patient will recognize the stimulus, but it will not be painful," he says. "But when you increase the intensity of the stimulus, eventually you reach threshold where suddenly the patient will say, 'This is painful.'"

Thus, "the idea was that shutting the gate was something that the large fibers produced, and opening the gate was something that the small fibers produced."

Now back to your pain. When you suck on a jammed finger or rub a banged shin, you're stimulating the large fibers with "counter irritation," Mendell says. The effect is "a decrease in the message, or the magnitude of the barrage of signals being driven across the incoming fiber activation. You basically shut the gate. That is what reduces pain."

This concept has created "a big industry" around treating pain with mild electrical stimulation, Mendell says, with the goal of stimulating those large fibers in the hopes they will shut the gate on the pain signals from the small fibers.

While counter irritation may not help dull the pain of serious injury, it may come in handy the next time you experience a bad bruise or a stubbed toe.

nextArticle.image_alt|e
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
arrow
Medicine
Bill Gates is Spending $100 Million to Find a Cure for Alzheimer's
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation

Not everyone who's blessed with a long life will remember it. Individuals who live into their mid-80s have a nearly 50 percent chance of developing Alzheimer's, and scientists still haven't discovered any groundbreaking treatments for the neurodegenerative disease [PDF]. To pave the way for a cure, Microsoft co-founder and philanthropist Bill Gates has announced that he's donating $100 million to dementia research, according to Newsweek.

On his blog, Gates explained that Alzheimer's disease places a financial burden on both families and healthcare systems alike. "This is something that governments all over the world need to be thinking about," he wrote, "including in low- and middle-income countries where life expectancies are catching up to the global average and the number of people with dementia is on the rise."

Gates's interest in Alzheimer's is both pragmatic and personal. "This is something I know a lot about, because men in my family have suffered from Alzheimer’s," he said. "I know how awful it is to watch people you love struggle as the disease robs them of their mental capacity, and there is nothing you can do about it. It feels a lot like you're experiencing a gradual death of the person that you knew."

Experts still haven't figured out quite what causes Alzheimer's, how it progresses, and why certain people are more prone to it than others. Gates believes that important breakthroughs will occur if scientists can understand the condition's etiology (or cause), create better drugs, develop techniques for early detection and diagnosis, and make it easier for patients to enroll in clinical trials, he said.

Gates plans to donate $50 million to the Dementia Discovery Fund, a venture capital fund that supports Alzheimer's research and treatment developments. The rest will go to research startups, Reuters reports.

[h/t Newsweek]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios