Homo Naledi's Bones Were Made For Walking … and Climbing

Peter Schmid and William Harcourt-Smith / Wits University
Peter Schmid and William Harcourt-Smith / Wits University

Its bones were made for walking—and for climbing, and possibly for tool making. That’s the latest insight to emerge from the ongoing analysis of Homo Naledi, our newest human relative, discovered in 2013 in the deep, nearly inaccessible Rising Star cave system in South Africa’s Cradle of Humankind. A pair of papers recently published in Nature Communications—one on the creature’s foot, and the other on the hand—paint a more detailed picture of these small-brained creatures.  

In the foot study, a team of researchers led by William Harcourt-Smith, a paleoanthropologist at Lehman College and a resident research assistant at the American Museum of Natural History, analyzed 107 bones from the foot of H. Naledi, including one nearly complete adult foot.

“The key finding is that this is a foot that is really, really human-like in most respects,” Harcourt-Smith told mental_floss. “However, in such a human-like foot, we did also find a couple of features that aren’t so human-like.”

He points to the creature’s slightly curved bones in its toes—a more primitive feature that may have been used to climb trees. It also seems to have had an arch that was quite low, which may have affected how it could have walked long distances on two legs, Harcourt-Smith says: “That in itself is quite interesting, because it points to how these animals were experimenting with walking upright. And, of course, bipedalism defines us as being human.”

A digital reconstruction of the H. Naledi foot. (a) Dorsal view. (b) Distal view of the cuneiforms and cuboid showing transverse arch reconstruction. (c) Medial view showing the moderate longitudinal arch. Image credit: Harcourt-Smith et al. in Nature Communications

In the hand study, a team lead by paleoanthropologist Tracy Kivell, of the University of Kent’s Skeletal Biology Research Centre, studied the near-complete hand (it’s missing one wrist bone known as a pisiform) of H. Naledi that was found with the bones still partially connected—an extraordinarily rare find. Some 150 hand bones were unearthed in the cave in all.

The 26 bones show a mix of characteristics that have never been seen before in any other hominin species, they say. The wrist bones have adaptive features that would’ve helped H. Naledi use tools (though none have been discovered) that are consistently found only in modern humans and Neanderthals. On the other hand, the finger bones are curved more than most australopiths—bipedal hominids like the 3.3-million-year-old Lucy—and very different from the straight fingers of humans and Neanderthals, which indicates the creature spent a good amount of time climbing.

The H. Naledi bones have yet to be dated, which means we don't know where they fit in among our hominid relatives. "Depending on how old (geologically) the H. naledi remains turn out to be, there will be important implications for interpreting the South African archaeological record, who made the various stone tools that have been found, and what anatomical adaptations were necessary to craft these implements," Kivell said in a statement sent to mental_floss.  

The hand of H. Naledi. (a) Palmar (left) and dorsal (right) views of the right hand bones, (b) found in situ in semi-articulation with the palm up and fingers flexed. The palmar surface of the metacarpals (Mc) and dorsal surface of the intermediate phalanges (IP) can be seen. Image credit: Kivell et al. in Nature Communications

When you put together the mostly modern foot and the modern-primitive hand with other features of the H. naledi body—especially the shoulder suited for climbing and a tiny skull that is decidedly un-human like in size—you get a picture of a creature that is utterly unlike anything else in the fossil record, Harcourt-Smith says. H. Naledi’s unique suite of characteristics “really speak to a unique experiment with being upright, with some part of the time spent being in the trees and some of the time walking around on the ground,” he says.

They’re not yet sure how the creature would have walked. “We haven’t come up with a really good model how it moved yet,” Harcourt-Smith says. “It’s a real conundrum. But I can tell you this: It would’ve spending most of its time walking upright. Its heel would’ve struck the ground the way ours does, and when it was walking it would’ve [looked] distinct from us—but not that much so.”

He continues, “What’s really interesting is that we always used to think with the genus Homo that one of the hallmarks of it was being a full upright, sort of obligate, 100 percent biped. But we now have a creature that we’ve assigned to Homo based on its feet and skull, and yet it’s not really walking upright 100 percent of the time. It raises as many questions as it answers about bipeds.”

Figuring out how H. naledi moved is one of the next big areas of inquiry for the foot researchers. “We really want to reconstruct the gait of this creature,” Harcourt-Smith says. “That means working with all of the teams and coming up with a really robust biomechanical evaluation of the whole. It’ll be a few years worth of work.”

They're also going to investigate the internal architecture, he says. “We’re going to be looking at the molecular structure, and that requires very high-resolution CT scanning.”

As for the hand, Kivell too will be peering inside. “We have done microCT scans of the hand bones and will next analyze the internal bony structure—trabecular and cortical bone—which can tell us more information about function and how the H. naledi hand was used,” she told mental_floss in an email.     

While the science continues, the scientists themselves seem to still be riding the high of the discovery of this unprecedentedly large assemblage of unique bones, and excited by what they can teach us about our evolutionary past.

“When I got down there, it was fossil heaven,” Harcourt-Smith says. “There were so many different things. You never get these sort of opportunities with this amount of stuff found so quickly, and it really was an extraordinary privilege to work on. It’s not normal to get this sort of treasure trove of material in one go. It’s new territory in some ways.”

Remains of Late 19th-Century Shipwreck Found on Jersey Shore

iStock.com/Sierra Gaglione
iStock.com/Sierra Gaglione

The holiday season isn't usually associated with the beach, but nature has a funny way of delivering surprises no matter the time of year. The weekend before Christmas, the remains of an old ship stretching over 25 feet long were discovered at the southern area of Stone Harbor beach, according to nj.com.

Local historians believe the vessel is the D.H. Ingraham, a schooner that sank in 1886 during a voyage from Rockland, Maine, to Richmond, Virginia. Archives from the time recount that while the ship was delivering a cargo of lime, it caught fire. Thanks to station employees at the nearby Hereford Lighthouse, all five men aboard were rescued and given proper shelter for the next four days. The rescuers even received medals of honor from Congress, which are still on display inside the lighthouse, according to the Press of Atlantic City.

This is not the only shipwreck to have been discovered along the Jersey Shore; in 2014, the U.S. Army Corps of Engineers found one while making repairs to the Barnegat Inlet jetty. (New Jersey has its own Historical Divers Association, and at one point its president, Dan Lieb, estimated that the state had up to 7000 shipwrecks off its coasts.)

To check out more coverage about shipwrecks, like this 48-foot find in Florida earlier this year, click here.

[h/t nj.com]

People Have Been Dining on Caviar Since the Stone Age

iStock.com/Lisovskaya
iStock.com/Lisovskaya

Millennia before caviar became a staple hors d'oeuvre at posh parties, it was eaten from clay pots by Stone Age humans. That's the takeaway of a new study published in the journal PLOS One. As Smithsonian reports, traces of cooked fish roe recovered from an archeological site in Germany show just how far back the history of the dish goes.

For the study, researchers from Germany conducted a protein analysis of charred food remains caked to the shards of an Stone Age clay cooking vessel. After isolating roughly 300 proteins and comparing them to that of boiled fresh fish roe and tissue, they were able to the identify the food scraps as carp roe, or eggs. The scientists write that the 4000 BCE-era hunter-gatherers likely cooked the fish roe in a pot of water or fish broth heated by embers, and covered the pot with leaves to contain the heat or add additional flavor.

The clay shards were recovered from Friesack 4 in Brandenburg, Germany, a Stone Age archaeological site that has revealed about 150,000 artifacts, including items crafted from antlers, wood, and bone, since it was discovered in the 1930s. In the same study, the researchers report that they also found remnants of bone-in pork on a vessel recovered from the same site.

Other archaeological digs have shown that some of the foods we think of as modern delicacies have been around for thousands of years, including cheese, salad dressing, and bone broth. The same goes for beverages: Recently a 13,000-year-old brewery was uncovered in the Middle East.

[h/t Smithsonian]

SECTIONS

arrow
LIVE SMARTER