CLOSE
NASA 

You Can See a Rare Total Eclipse of a Red Super Harvest Moon

NASA 

On Sunday September 27, something rare and wonderful will happen: the Moon will be full, it will be as near to us as it gets, and it will line up perfectly with the Earth and Sun. The result will be a rare total super harvest moon eclipse, when a giant, full Moon will turn a stunning shade of red.

In celestial terms, that's like a Super Bowl played by Academy Award nominees, with the winner revealing who killed Laura Palmer. It's the only one in a 51-year period; the last supermoon eclipse occurred in 1982, and the next won't come around until 2033. Don't miss it or you'll have to wait 18 years.

WHAT IS GOING ON UP THERE?

We've known for at least 2500 years what a lunar eclipse is thanks to Anaxagoras, a Greek philosopher, who worked out the mechanics in the 5th century BCE. Though we've been recording eclipses for millennia, they never fail to inspire a sense of awe and wonder.

So how does this rare total super harvest moon eclipse come about? You've probably noticed that the Moon appears to be different sizes at various points throughout the year. This is because the Moon's orbit around the Earth is not circular but elliptical. When the Moon is nearest to the Earth on its orbit, it is at "perigee." When it is farthest away, it is at "apogee." At perigee, the Moon appears giant, and at apogee, small.

Note that this is unrelated to the Moon's phases, which are determined by the relative positions of the Sun, Earth, and Moon. For example, when the Earth is between the Moon and the Sun, you see a full moon, because we're looking at the fully sunlit side of the Moon. The three bodies rarely line up exactly, but when they do, you get a total lunar eclipse.

Bringing the two concepts together: When the Moon's phase is full and it is at perigee (i.e. closest to the Earth, and thus giant), you get what astronomers call perigee-syzygy, or, colloquially, a "supermoon." Now add the date to the equation: September is harvest time for farmers, making a full moon that month a "harvest moon." Why? In the days before light bulbs, farmers could use this extra moonlight to harvest crops late into the night.

This weekend the Moon will be full, it will be at perigee, and it will line up perfectly with the Earth and Sun. Because all of this is happening in late September, you get a total super harvest moon eclipse! It's like a moon named by the people who make sequels to Street Fighter.

WHEN TO LOOK UP

On September 27 at 9:07 p.m. EST, the Moon will begin traveling through the Earth's shadow. At 10:11 p.m., the Moon will be fully eclipsed, and will turn an amazing shade of red. The show will last 72 minutes.

But why will it be red? From the vantage point of the Moon, the Earth will appear to be moving across the Sun. Once the Earth is directly between the Moon and the Sun, as NASA evocatively explains, "the darkened terrestrial disk is ringed by every sunrise and every sunset in the world, all at once." The copper sky filters into the shadow of the Earth and is projected onto the white disk that is the Moon. Here's a shockingly crimson Moon as seen from Australia in August 2007.

Image credit: Martin Pugh via NASA
nextArticle.image_alt|e
iStock
arrow
Space
Look Up! Residents of Maine and Michigan Might Catch a Glimpse of the Northern Lights Tonight
iStock
iStock

The aurora borealis, a celestial show usually reserved for spectators near the arctic circle, could potentially appear over parts of the continental U.S. on the night of February 15. As Newsweek reports, a solar storm is on track to illuminate the skies above Maine and Michigan.

The Northern Lights (and the Southern Lights) are caused by electrons from the sun colliding with gases in the Earth’s atmosphere. The solar particles transfer some of their energy to oxygen and nitrogen molecules on contact, and as these excited molecules settle back to their normal states they release light particles. The results are glowing waves of blue, green, purple, and pink light creating a spectacle for viewers on Earth.

The more solar particles pelt the atmosphere, the more vivid these lights become. Following a moderate solar flare that burst from the sun on Monday, the NOAA Space Weather Prediction Center forecast a solar light show for tonight. While the Northern Lights are most visible from higher latitudes where the planet’s magnetic field is strongest, northern states are occasionally treated to a view. This is because the magnetic North Pole is closer to the U.S. than the geographic North Pole.

This Thursday night into Friday morning is expected to be one of those occasions. To catch a glimpse of the phenomena from your backyard, wait for the sun to go down and look toward the sky. People living in places with little cloud cover and light pollution will have the best chance of spotting it.

[h/t Newsweek]

nextArticle.image_alt|e
Kevin Gill, Flickr // CC BY-2.0
arrow
Space
10 Facts About the Dwarf Planet Haumea
Kevin Gill, Flickr // CC BY-2.0
Kevin Gill, Flickr // CC BY-2.0

In terms of sheer weirdness, few objects in the solar system can compete with the dwarf planet Haumea. It has a strange shape, unusual brightness, two moons, and a wild rotation. Its unique features, however, can tell astronomers a lot about the formation of the solar system and the chaotic early years that characterized it. Here are a few things you need to know about Haumea, the tiny world beyond Neptune.

1. THREE HAUMEAS COULD FIT SIDE BY SIDE IN EARTH.

Haumea is a trans-Neptunian object; its orbit, in other words, is beyond that of the farthest ice giant in the solar system. Its discovery was reported to the International Astronomical Union in 2005, and its status as a dwarf planet—the fifth, after Ceres, Eris, Makemake, and Pluto—was made official three years later. Dwarf planets have the mass of a planet and have achieved hydrostatic equilibrium (i.e., they're round), but have not "cleared their neighborhoods" (meaning their gravity is not dominant in their orbit). Haumea is notable for the large amount of water ice on its surface, and for its size: Only Pluto and Eris are larger in the trans-Neptunian region, and Pluto only slightly, with a 1475-mile diameter versus Haumea's 1442-mile diameter. That means three Haumeas could fit sit by side in Earth—and yet it only has 1/1400th of the mass of our planet.

2. HAUMEA'S DISCOVERY WAS CONTROVERSIAL.

There is some disagreement over who discovered Haumea. A team of astronomers at the Sierra Nevada Observatory in Spain first reported its discovery to the Minor Planet Center of the International Astronomical Union on July 27, 2005. A team led by Mike Brown from the Palomar Observatory in California had discovered the object earlier, but had not reported their results, waiting to develop the science and present it at a conference. They later discovered that their files had been accessed by the Spanish team the night before the announcement was made. The Spanish team says that, yes, they did run across those files, having found them in a Google search before making their report to the Minor Planet Center, but that it was happenstance—the result of due diligence to make sure the object had never been reported. In the end, the IAU gave credit for the discovery to the Spanish team—but used the name proposed by the Caltech team.

3. IT'S NAMED FOR A HAWAIIAN GODDESS.

In Hawaiian mythology, Haumea is the goddess of fertility and childbirth. The name was proposed by the astronomers at Caltech to honor the place where Haumea's moon was discovered: the Keck Observatory on Mauna Kea, Hawaii. Its moons—Hi'iaka and Namaka—are named for two of Haumea's children.

4. HAUMEA HAS RINGS—AND THAT'S STRANGE.

Haumea is the farthest known object in the solar system to possess a ring system. This discovery was recently published in the journal Nature. But why does it have rings? And how? "It is not entirely clear to us yet," says lead author Jose-Luis Ortiz, a researcher at the Institute of Astrophysics of Andalusia and leader of the Spanish team of astronomers who discovered Haumea.

5. HAUMEA'S SURFACE IS EXTREMELY BRIGHT.

In addition to being extremely fast, oddly shaped, and ringed, Haumea is very bright. This brightness is a result of the dwarf planet's composition. On the inside, it's rocky. On the outside, it is covered by a thin film of crystalline water ice [PDF]—the same kind of ice that's in your freezer. That gives Haumea a high albedo, or reflectiveness. It's about as bright as a snow-covered frozen lake on a sunny day.

6. HAUMEA HAS ONE OF THE SHORTEST DAYS IN THE ENTIRE SOLAR SYSTEM.

If you lived to be a year old on Haumea, you would be 284 years old back on Earth. And if you think a Haumean year is unusual, that's nothing next to the length of a Haumean day. It takes 3.9 hours for Haumea to make a full rotation, which means it has by far the fastest spin, and thus shortest day, of any object in the solar system larger than 62 miles.

7. HAUMEA'S HIGH SPEED SQUISHES IT INTO A SHAPE LIKE A RUGBY BALL.

haumea rotation gif
Stephanie Hoover, Wikipedia // Public Domain

As a result of this tornadic rotation, Haumea has an odd shape; its speed compresses it so much that rather than taking a spherical, soccer ball shape, it is flattened and elongated into looking something like a rugby ball.

8. HIGH-SPEED COLLISIONS MAY EXPLAIN HAUMEA'S TWO MOONS.

Ortiz says there are several mechanisms that can have led to rings around the dwarf planet: "One of our favorite scenarios has to do with collisions on Haumea, which can release material from the surface and send it to orbit." Part of the material that remains closer to Haumea can form a ring, and material further away can help form moons. "Because Haumea spins so quickly," Ortiz adds, "it is also possible that material is shed from the surface due to the centrifugal force, or maybe small collisions can trigger ejections of mass. This can also give rise to a ring and moons."

9. ONE MOON HAS WATER ICE—JUST LIKE HAUMEA.

Ortiz says that while the rings haven't transformed scientists' understanding of Haumea, they have clarified the orbit of its largest moon, Hi'iaka—it is equatorial, meaning it circles around Haumea's equator. Hi'iaka is notable for the crystalline water ice on its surface, similar to that on its parent body.

10. TRYING TO SEE HAUMEA FROM EARTH IS LIKE TRYING TO LOOK AT A COIN MORE THAN 100 MILES AWAY.

It's not easy to study Haumea. The dwarf planet, and other objects at that distance from the Sun, are indiscernible to all but the largest telescopes. One technique used by astronomers to study such objects is called "stellar occultation," in which the object is observed as it crosses in front of a star, causing the star to temporarily dim. (This is how exoplanets—those planets orbiting other stars—are also often located and studied.) This technique doesn't always work for objects beyond the orbit of Neptune, however; astronomers must know the objects' orbits and the position of the would-be eclipsed stars to astounding levels of accuracy, which is not always the case. Moreover, Ortiz says, their sizes are oftentimes very small, "comparable to the size of a small coin viewed at a distance of a couple hundred kilometers."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios