Here’s Boeing’s Teaser for Their First Commercial Starliner

American astronauts have depended on Russia to send crews to the International Space Station since the Space Shuttle was retired in 2011. NASA hopes to usher in a new golden age of space exploration with commercial flight, starting with Boeing’s CST-100 Starliner.

The air travel company just released a teaser for what’s set to be the first commercial starliner launched from U.S. soil. The CST-100 (Crew Space Transportation) will be designed to hold four crew members plus cargo and will be assembled at the Kennedy Space Center. NASA is also collaborating with Elon Musk’s company SpaceX to modify their Dragon cargo ship for manned flights. Dragon made history in 2012 when it became the first commercial ship to deliver cargo to the ISS and successfully return cargo to earth. 

The CST-100 Starliner’s first test flight is scheduled for 2017, with Dragon’s first manned test flight predicted to launch in two to three years. Boeing claims their effort will allow research on the ISS to double, which could in turn bring astronauts that much closer to setting foot on Mars. Check out the teaser above for a virtual look inside the starliner. 

[h/t: Sploid]

nextArticle.image_alt|e
iStock
Astronomers Discover 12 New Moons Around Jupiter
iStock
iStock

As the largest planet with the largest moon in our solar system, Jupiter is a body of record-setting proportions. The fifth planet from the Sun also boasts the most moons—and scientists just raised the count to 79.

A team of astronomers led by Scott S. Sheppard of the Carnegie Institute for Science confirmed the existence of 12 additional moons of Jupiter, 11 of which are “normal” outer moons, according to a statement from the institute. The outlier is being called an “oddball” for its bizarre orbit and diminutive size, which is about six-tenths of a mile in diameter.

The moons were first observed in the spring of 2017 while scientists looked for theoretical planet beyond Pluto, but several additional observations were needed to confirm that the celestial bodies were in fact orbiting around Jupiter. That process took a year.

“Jupiter just happened to be in the sky near the search fields where we were looking for extremely distant solar system objects, so we were serendipitously able to look for new moons around Jupiter while at the same time looking for planets at the fringes of our solar system,” Sheppard said in a statement.

Nine of the "normal" moons take about two years to orbit Jupiter in retrograde, or counter to the direction in which Jupiter spins. Scientists believe these moons are what’s left of three larger parent bodies that splintered in collisions with asteroids, comets, or other objects. The two other "normal" moons orbit in the prograde (same direction as Jupiter) and take less than a year to travel around the planet. They’re also thought to be chunks of a once-larger moon.

The oddball, on the other hand, is “more distant and more inclined” than the prograde moons. Although it orbits in prograde, it crosses the orbits of the retrograde moons, which could lead to some head-on collisions. The mass is believed to be Jupiter’s smallest moon, and scientists have suggested naming it Valetudo after the Roman goddess of health and hygiene, who happens to be the great-granddaughter of the god Jupiter.

nextArticle.image_alt|e
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios