CLOSE
YouTube
YouTube

Will This New Development in CGI Skin Overcome the Uncanny Valley?

YouTube
YouTube

Computer graphics populate the levels of your favorite video games and help turn actors into superheroes. Bad CGI can derail a project and distract the audience, but when done skillfully, it can seamlessly fill gaps and enhance the overall viewing experience. A recent breakthrough in creating CGI skin by researchers at the USC Institute for Creative Technologies and Imperial College London is changing the game, and will most certainly raise the bar for what can be considered “realistic.”

By developing a “10-micron resolution scanning technique” to capture very subtle skin microstructure deformations, the researchers were able to translate the tiniest movements in the skin and pores into usable data. The data was then used to manipulate the CGI character’s artificial flesh, resulting in rendered skin that stretches and compresses in ways that are more nuanced and realistic than ever before. The next step would be to study and use this technique to mimic various emotions, as well as differences in expression across age, race, and gender.

This is a major development, and one that computer graphics designers have been building towards for decades. Back in 1992, the makers of the film Death Becomes Her used CGI skin software (paired with silicone and animatronics) in various scenes and took home the Academy Award for Best Achievement in Visual Effects. Fast forward to 1997, and Pixar was pushing the envelope with CGI textures and skin with Geri’s Game, a short that also snagged an Academy Award. 

As the years progressed, the software seemed to peak at a point where CGI skin looked real, but not photo-real (this scene in The Matrix Reloaded is a good example). Attempts to make actors seem younger or to help them achieve inhuman feats with “digital cosmetic enhancements” was impressive, but still unnatural and a little weird. This CGI sits firmly in what is often called the “uncanny valley,” a step just shy of photorealism that evokes a negative emotional response. 

Is it possible that this study could be the key to escaping that uncanny valley? Check out the video below, which explains the study and its findings, and head to the project website to read the technical paper in full.

nextArticle.image_alt|e
WWF
arrow
Animals
Watch an Antarctic Minke Whale Feed in a First-of-Its-Kind Video
WWF
WWF

New research from the World Wildlife Fund is giving us a rare glimpse into the world of the mysterious minke whale. The WWF worked with Australian Antarctic researchers to tag minke whales with cameras for the first time, watching where and how the animals feed.

The camera attaches to the whale's body with suction cups. In the case of the video below, the camera accidentally slid down the side of the minke whale's body, providing an unexpected look at the way its throat moves as it feeds.

Minke whales are one of the smallest baleen whales, but they're still pretty substantial animals, growing 30 to 35 feet long and weighing up to 20,000 pounds. Unlike other baleen whales, though, they're small enough to maneuver in tight spaces like within sea ice, a helpful adaptation for living in Antarctic waters. They feed by lunging through the sea, gulping huge amounts of water along with krill and small fish, and then filtering the mix through their baleen.

The WWF video shows just how quickly the minke can process this treat-laden water. The whale could lunge, process, and lunge again every 10 seconds. "He was like a Pac-Man continuously feeding," Ari Friedlaender, the lead scientist on the project, described in a press statement.

The video research, conducted under the International Whaling Commission's Southern Ocean Research Partnership, is part of WWF's efforts to protect critical feeding areas for whales in the region.

If that's not enough whale for you, you can also watch the full 13-minute research video below:

nextArticle.image_alt|e
iStock
arrow
technology
AI Could Help Scientists Detect Earthquakes More Effectively
iStock
iStock

Thanks in part to the rise of hydraulic fracturing, or fracking, earthquakes are becoming more frequent in the U.S. Even though it doesn't fall on a fault line, Oklahoma, where gas and oil drilling activity doubled between 2010 and 2013, is now a major earthquake hot spot. As our landscape shifts (literally), our earthquake-detecting technology must evolve to keep up with it. Now, a team of researchers is changing the game with a new system that uses AI to identify seismic activity, Futurism reports.

The team, led by deep learning researcher Thibaut Perol, published the study detailing their new neural network in the journal Science Advances. Dubbed ConvNetQuake, it uses an algorithm to analyze the measurements of ground movements, a.k.a. seismograms, and determines which are small earthquakes and which are just noise. Seismic noise describes the vibrations that are almost constantly running through the ground, either due to wind, traffic, or other activity at surface level. It's sometimes hard to tell the difference between noise and legitimate quakes, which is why most detection methods focus on medium and large earthquakes instead of smaller ones.

But better understanding natural and manmade earthquakes means studying them at every level. With ConvNetQuake, that could soon become a reality. After testing the system in Oklahoma, the team reports it detected 17 times more earthquakes than what was recorded by the Oklahoma Geological Survey earthquake catalog.

That level of performance is more than just good news for seismologists studying quakes caused by humans. The technology could be built into current earthquake detection methods set up to alert the public to dangerous disasters. California alone is home to 400 seismic stations waiting for "The Big One." On a smaller scale, there's an app that uses a smartphone's accelerometers to detect tremors and alert the user directly. If earthquake detection methods could sense big earthquakes right as they were beginning using AI, that could afford people more potentially life-saving moments to prepare.

[h/t Futurism]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios