CLOSE
iStock
iStock

What Purpose Did the Appendix Once Serve?

iStock
iStock

The appendix is often only noticed when it necessitates troublesome removal. Wouldn't we be better off never having had an appendix at all? Darwin himself speculated that the appendix never served an independent function, and that it had once been part of a much larger cecum that shriveled as it shrank into a separate, useless fold.

But Darwin didn't have the whole picture. Recent research by William Parker from Duke and other doctors suggests that not only was the appendix once very important, it still is in some countries. The appendix, it turns out, is not vestigial at all.

In 2007, Dr. Parker and a team of immunologists at Duke published a study asserting that the appendix serves as a "safe house" for beneficial gut bacteria in the event of a serious gastrointestinal disease. Once the body's immune system has defeated the disease, the healthy microbes that had been safely ensconced in the appendix quickly repopulate the gut.

"[The appendix] looks like it’s situated perfectly to reboot the system if you get an infectious disease—say cholera or typhoid—some kind of infectious disease of the gut that would cause a diarrheal response," Dr. Parker tells mental_floss.

In 2013, Dr. Parker worked with an international team of researchers on mapping the evolution of the appendix. Their study compiled information on the diets of 361 living mammals and found that the 50 species now considered to have an appendix are so diversely scattered across the mammalian evolutionary tree that the appendix must have evolved independently at least 32 times, and perhaps as many as 38 times.

"It’s what we call a recurrent trait, it comes and goes but only in certain mammal groups, in other mammal groups you just don’t see it at all," Parker explains. Establishing the appendix as a recurrent trait helps to back Dr. Parker's safe house theory. In most cases, when the appendix first begins to appear in a species there is no sign of a dietary shift, as Darwin speculated, that would accompany a shrinking cecum. Evolution was selecting for the development of an appendix over and over again, likely because of the role it played in backing up the immune system.

But does its ability to protect beneficial bacteria still work? "We think so, that’s hypothetically the case. Of course, no one is willing to do that experiment," Dr. Parker said.

In developed countries, "[the appendix] was probably very useful around 1850, maybe even say 1890. But it’s become much less useful since 1950 when toilets were essentially universal in the United States." And it likely still plays an important function in developing nations where infectious gut diseases are more prevalent.

The appendix's apparent ability to contribute to the immune system means that, contrary to popular belief and widespread categorization, it may not be vestigial after all. Instead, as Dr. Parker says, "We’ve had some social changes that have made a lot of parts of our immune system inactive."

nextArticle.image_alt|e
iStock
arrow
Big Questions
Do Bacteria Have Bacteria?
iStock
iStock

Drew Smith:

Do bacteria have bacteria? Yes.

We know that bacteria range in size from 0.2 micrometers to nearly one millimeter. That’s more than a thousand-fold difference, easily enough to accommodate a small bacterium inside a larger one.

Nothing forbids bacteria from invading other bacteria, and in biology, that which is not forbidden is inevitable.

We have at least one example: Like many mealybugs, Planococcus citri has a bacterial endosymbiont, in this case the β-proteobacterium Tremblaya princeps. And this endosymbiont in turn has the γ-proteobacterium Moranella endobia living inside it. See for yourself:

Fluorescent In-Situ Hybridization confirming that intrabacterial symbionts reside inside Tremblaya cells in (A) M. hirsutus and (B) P. marginatus mealybugs. Tremblaya cells are in green, and γ-proteobacterial symbionts are in red. (Scale bar: 10 μm.)
Fluorescent In-Situ Hybridization confirming that intrabacterial symbionts reside inside Tremblaya cells in (A) M. hirsutus and (B) P. marginatus mealybugs. Tremblaya cells are in green, and γ-proteobacterial symbionts are in red. (Scale bar: 10 μm.)

I don’t know of examples of free-living bacteria hosting other bacteria within them, but that reflects either my ignorance or the likelihood that we haven’t looked hard enough for them. I’m sure they are out there.

Most (not all) scientists studying the origin of eukaryotic cells believe that they are descended from Archaea.

All scientists accept that the mitochondria which live inside eukaryotic cells are descendants of invasive alpha-proteobacteria. What’s not clear is whether archeal cells became eukaryotic in nature—that is, acquired internal membranes and transport systems—before or after acquiring mitochondria. The two scenarios can be sketched out like this:


The two hypotheses on the origin of eukaryotes:

(A) Archaezoan hypothesis.

(B) Symbiotic hypothesis.

The shapes within the eukaryotic cell denote the nucleus, the endomembrane system, and the cytoskeleton. The irregular gray shape denotes a putative wall-less archaeon that could have been the host of the alpha-proteobacterial endosymbiont, whereas the oblong red shape denotes a typical archaeon with a cell wall. A: archaea; B: bacteria; E: eukaryote; LUCA: last universal common ancestor of cellular life forms; LECA: last eukaryotic common ancestor; E-arch: putative archaezoan (primitive amitochondrial eukaryote); E-mit: primitive mitochondrial eukaryote; alpha:alpha-proteobacterium, ancestor of the mitochondrion.

The Archaezoan hypothesis has been given a bit of a boost by the discovery of Lokiarcheota. This complex Archaean has genes for phagocytosis, intracellular membrane formation and intracellular transport and signaling—hallmark activities of eukaryotic cells. The Lokiarcheotan genes are clearly related to eukaryotic genes, indicating a common origin.

Bacteria-within-bacteria is not only not a crazy idea, it probably accounts for the origin of Eucarya, and thus our own species.

We don’t know how common this arrangement is—we mostly study bacteria these days by sequencing their DNA. This is great for detecting uncultivatable species (which are 99 percent of them), but doesn’t tell us whether they are free-living or are some kind of symbiont. For that, someone would have to spend a lot of time prepping environmental samples for close examination by microscopic methods, a tedious project indeed. But one well worth doing, as it may shed more light on the history of life—which is often a history of conflict turned to cooperation. That’s a story which never gets old or stale.

This post originally appeared on Quora. Click here to view.

nextArticle.image_alt|e
iStock
arrow
Big Questions
Why Do Cats 'Blep'?
iStock
iStock

As pet owners are well aware, cats are inscrutable creatures. They hiss at bare walls. They invite petting and then answer with scratching ingratitude. Their eyes are wandering globes of murky motivations.

Sometimes, you may catch your cat staring off into the abyss with his or her tongue lolling out of their mouth. This cartoonish expression, which is atypical of a cat’s normally regal air, has been identified as a “blep” by internet cat photo connoisseurs. An example:

Cunning as they are, cats probably don’t have the self-awareness to realize how charming this is. So why do cats really blep?

In a piece for Inverse, cat consultant Amy Shojai expressed the belief that a blep could be associated with the Flehmen response, which describes the act of a cat “smelling” their environment with their tongue. As a cat pants with his or her mouth open, pheromones are collected and passed along to the vomeronasal organ on the roof of their mouth. This typically happens when cats want to learn more about other cats or intriguing scents, like your dirty socks.

While the Flehmen response might precede a blep, it is not precisely a blep. That involves the cat’s mouth being closed while the tongue hangs out listlessly.

Ingrid Johnson, a certified cat behavior consultant through the International Association of Animal Behavior Consultants and the owner of Fundamentally Feline, tells Mental Floss that cat bleps may have several other plausible explanations. “It’s likely they don’t feel it or even realize they’re doing it,” she says. “One reason for that might be that they’re on medication that causes relaxation. Something for anxiety or stress or a muscle relaxer would do it.”

A photo of a cat sticking its tongue out
iStock

If the cat isn’t sedated and unfurling their tongue because they’re high, then it’s possible that an anatomic cause is behind a blep: Johnson says she’s seen several cats display their tongues after having teeth extracted for health reasons. “Canine teeth help keep the tongue in place, so this would be a more common behavior for cats missing teeth, particularly on the bottom.”

A blep might even be breed-specific. Persians, which have been bred to have flat faces, might dangle their tongues because they lack the real estate to store it. “I see it a lot with Persians because there’s just no room to tuck it back in,” Johnson says. A cat may also simply have a Gene Simmons-sized tongue that gets caught on their incisors during a grooming session, leading to repeated bleps.

Whatever the origin, bleps are generally no cause for concern unless they’re doing it on a regular basis. That could be sign of an oral problem with their gums or teeth, prompting an evaluation by a veterinarian. Otherwise, a blep can either be admired—or retracted with a gentle prod of the tongue (provided your cat puts up with that kind of nonsense). “They might put up with touching their tongue, or they may bite or swipe at you,” Johnson says. “It depends on the temperament of the cat.” Considering the possible wrath involved, it may be best to let them blep in peace.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios