CLOSE
YouTube
YouTube

Supersonic Airliner Would Fly Passengers Across the Ocean in an Hour

YouTube
YouTube

Faster than a speeding bullet. More powerful than a locomotive. Able to make a transatlantic voyage in a single hour. Superman’s got nothing on Airbus’ proposed new jet.

In a recent patent filed with the United States Patent and Trademark Office, the aircraft manufacturer has outlined plans for a plane that travels at Mach 4.5, which just so happens to be the equivalent of 4.5 times the speed of sound. At that rate, you could fly from New York City to London in about an hour, or from Los Angeles to Tokyo in about three hours.

According to the patent, the plane would be powered by a system of motors, comprised of turbojets, ram jets, and a rocket motor. In this video, PatentYogi Deepak Gupta breaks down how the three different types of engines work in conjunction to help the supersonic jet travel faster than even the fastest Concorde—while also minimizing the sonic boom produced when the jet takes off.

There are no plans to begin work on this supersonic jet—yet—but in the meantime, you can get a glimpse at the possible future of commercial flight over at the USPTO’s website.

[h/t: Mashable

nextArticle.image_alt|e
iStock
arrow
architecture
Engineers Have Figured Out How the Leaning Tower of Pisa Withstands Earthquakes
iStock
iStock

Builders had barely finished the second floor of the Tower of Pisa when the structure started to tilt. Despite foundational issues, the project was completed, and eight centuries and at least four major earthquakes later, the precarious landmark remains standing. Now, a team of engineers from the University of Bristol and other institutions claims to have finally solved the mystery behind its endurance.

Pisa is located between the Arno and Serchio rivers, and the city's iconic tower was built on soft ground consisting largely of clay, shells, and fine sand. The unstable foundation meant the tower had been sinking little by little until 2008, when construction workers removed 70 metric tons of soil to stabilize the site. Today it leans at a 4-degree angle—about 13 feet past perfectly vertical.

Now researchers say that the dirt responsible for the tower's lean also played a vital role in its survival. Their study, which will be presented at this year's European Conference on Earthquake Engineering in Greece, shows that the combination of the tall, stiff tower with the soft soil produced an effect known as dynamic soil-structure interaction, or DSSI. During an earthquake, the tower doesn't move and shake with the earth the same way it would with a firmer, more stable foundation. According to the engineers, the Leaning Tower of Pisa is the world's best example of the effects of DSSI.

"Ironically, the very same soil that caused the leaning instability and brought the tower to the verge of collapse can be credited for helping it survive these seismic events," study co-author George Mylonakis said in a statement.

The tower's earthquake-proof foundation was an accident, but engineers are interested in intentionally incorporating the principles of DSSI into their structures—as long as they can keep them upright at the same time.

nextArticle.image_alt|e
LLPA
arrow
Weird
U2’s 360-Degree Tour Stage Will Become a Utah Aquarium Attraction
LLPA
LLPA

The immense stage that accompanied U2 on the band’s 360° Tour from 2009 to 2011 is getting an unexpected second life as a Utah educational attraction. It will soon be installed over a new plaza at the Loveland Living Planet Aquarium outside Salt Lake City.

The Claw, a 165-foot-tall structure shaped like a large spaceship balanced on four legs—a design inspired by the space-age Theme Building at Los Angeles International Airport—was built to house a massive speaker system and cylindrical video screen for the band’s performances. Underneath it, a 360° stage allowed U2 to play to audiences surrounding the structure in all directions. To make it easier to tour 30 different countries with the elaborate system, which took more than a week to put together at each concert location, the band had several versions built.

U2 and its management have been looking for a buyer for the 190-ton structures since the tour ended in 2011, and it seems they have finally found a home for one of them. One of the two remaining Claw structures is coming to the Utah aquarium, where it’s being installed as part of a plaza at the institution’s new, 9-acre Science Learning Campus.

A four-legged, industrial-looking video-and-sound-projection rig rises over a crowd at a concert
The Claw at a Dublin concert in 2009
Kristian Strøbech, Flickr // CC BY 2.0

As the only Claw in the U.S., the alien-looking feat of engineering will be "preserved and sustainably repurposed as a Utah landmark and symbol of science exploration and learning," according to the aquarium's press release. As part of the expansion project, the 2300-square-foot stage system will play host to festivals, movies, and other special events in two venues, one with 7000 seats and the other with 350.

The $25 million Science Learning Campus hasn’t been built yet—construction is starting this fall—so you’ll have to wait awhile to relive your U2 concert experience at the aquarium.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios