CLOSE
Original image
iStock

Why Are Calico Cats Almost Always Female (and Always Look Different)?

Original image
iStock

There’s a reason that colorful cats, like tortoiseshells and calicos, tend to be female. It comes down to genetics. 

Females (of all sorts, not just cats) have two X chromosomes, while males have an X and a Y. Rather than being overwhelmed by the double dose of genes provided by having two X chromosomes—each carries more than 1,000 genes—lady organisms have developed something called X-chromosome inactivation, a process that effectively hits the mute button on one of the two X-chromosomes in a cell. 

Kat McGowan explains in Nautilus

On the X chromosome of cats is a skin- and fur-color gene that has two variations (alleles) that dictate either orange fur or black fur. If a female cat inherits one X chromosome with the black allele and one with the orange version, each cell will have both versions, but X-inactivation means that some of her skin cells will code for orange and some for black. The inactivation happens very early in development, when the cat-in-the-making is still just a ball of cells, and the particular nature of skin tissue is that cells and their progeny stay close together. One of those primordial skin progenitor cells that happens to have an active orange allele will give rise to a cohesive blob of millions of cells in the fully developed cat, forming a big orange blotch. The same is true for those coding for black. 

The donor cat (left) and resulting cloned kitten (right, with surrogate mother). Image Credit: Shin et al., Nature (2002)


No calico cat will ever look identical to another. The particular pattern of a multi-colored cat’s coat comes down to chance, meaning that even among the same family, no cat will have the same coloration. Even with the exact same genetic make-up, a calico cat’s coloration would be different than her twin’s because it’s random whether a cell codes for orange or black fur. The same goes for clones. In 2002, when scientists cloned a calico cat named Rainbow, the clone kitten had vastly different coloring from Rainbow, even though their genes were exactly the same. 

Because X-inactivation only happens if there are multiple X chromosomes in one cell, coloration patterns that stem from the process tend to only pop up in female cats. Rarely, a genetic mutation can result in a cat being born with an extra chromosome (XXY), leading to a male calico or tortoiseshell cat, but for the most part, it’s purely a ladies’ club. 

[h/t: Nautilus]

Original image
arrow
Big Questions
Can You Really Go Blind Staring at a Solar Eclipse?
Original image

A total solar eclipse will cut a path of totality across the United States on August 21, and eclipse mania is gripping the country. Should the wide-eyed and unprotected hazard a peek at this rare phenomenon?

NASA doesn't advise it. The truth is, a quick glance at a solar eclipse won't leave you blind. But you're not doing your peepers any favors. As NASA explains, even when 99 percent of the sun's surface is covered, the 1 percent that sneaks out around the edges is enough to damage the rod and cone cells in your retinas. As this light and radiation flood into the eye, the retina becomes trapped in a sort of solar cooker that scorches its tissue. And because your retinas don't have any pain receptors, your eyes have no way of warning you to stop.

The good news for astronomy enthusiasts is that there are ways to safely view a solar eclipse. A pair of NASA-approved eclipse glasses will block the retina-frying rays, but sunglasses or any other kind of smoked lenses cannot. (The editors at MrEclipse.com, an eclipse watchers' fan site, put shades in the "eye suicide" category.) NASA also suggests watching the eclipse indirectly through a pinhole projector, or through binoculars or a telescope fitted with special solar filters.

While it's safe to take a quick, unfiltered peek at the sun in the brief totality of a total solar eclipse, doing so during the partial phases—when the Moon is not completely covering the Sun—is much riskier.

WOULDN'T IT BE EASIER TO JUST TELL YOUR KIDS THEY WILL GO BLIND?

NASA's website tackled this question. Their short answer: that could ruin their lives.

"A student who heeds warnings from teachers and other authorities not to view the eclipse because of the danger to vision, and learns later that other students did see it safely, may feel cheated out of the experience. Having now learned that the authority figure was wrong on one occasion, how is this student going to react when other health-related advice about drugs, alcohol, AIDS, or smoking is given[?]"

This story was originally published in 2012.

Original image
iStock
arrow
Big Questions
If Beer and Bread Use Almost the Exact Same Ingredients, Why Isn't Bread Alcoholic?
Original image
iStock

If beer and bread use almost the exact same ingredients (minus hops) why isn't bread alcoholic?

Josh Velson:

All yeast breads contain some amount of alcohol. Have you ever smelled a rising loaf of bread or, better yet, smelled the air underneath dough that has been covered while rising? It smells really boozy. And that sweet smell that fresh-baked bread has under the yeast and nutty Maillard reaction notes? Alcohol.

However, during the baking process, most of the alcohol in the dough evaporates into the atmosphere. This is basically the same thing that happens to much of the water in the dough as well. And it’s long been known that bread contains residual alcohol—up to 1.9 percent of it. In the 1920s, the American Chemical Society even had a set of experimenters report on it.

Anecdotally, I’ve also accidentally made really boozy bread by letting a white bread dough rise for too long. The end result was that not enough of the alcohol boiled off, and the darned thing tasted like alcohol. You can also taste alcohol in the doughy bits of underbaked white bread, which I categorically do not recommend you try making.

Putting on my industrial biochemistry hat here, many [people] claim that alcohol is only the product of a “starvation process” on yeast once they run out of oxygen. That’s wrong.

The most common brewers and bread yeasts, of the Saccharomyces genus (and some of the Brettanomyces genus, also used to produce beer), will produce alcohol in both a beer wort
and in bread dough immediately, regardless of aeration. This is actually a surprising result, as it runs counter to what is most efficient for the cell (and, incidentally, the simplistic version of yeast biology that is often taught to home brewers). The expectation would be that the cell would perform aerobic respiration (full conversion of sugar and oxygen to carbon dioxide and water) until oxygen runs out, and only then revert to alcoholic fermentation, which runs without oxygen but produces less energy.

Instead, if a Saccharomyces yeast finds itself in a high-sugar environment, regardless of the presence of air it will start producing ethanol, shunting sugar into the anaerobic respiration pathway while still running the aerobic process in parallel. This phenomenon is known as the Crabtree effect, and is speculated to be an adaptation to suppress competing organisms
in the high-sugar environment because ethanol has antiseptic properties that yeasts are tolerant to but competitors are not. It’s a quirk of Saccharomyces biology that you basically only learn about if you spent a long time doing way too much yeast cell culture … like me.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios