CLOSE

No One Knows Where This Minnesota Waterfall Goes

On the easternmost tip of Minnesota, not far from where the land meets Lake Superior and the United States meets Canada, the Brule River meets its own dividing line.

As the river makes its way to the largest of the Great Lakes, it drops rapidly—800 feet in an 8-mile span. At one point in the journey, the Brule River encounters a large cluster of rhyolite rock and diverges into two rivers with two very different personalities. One is a well-behaved, 50 foot waterfall and the other? Well, the other is the reason this area is known as Devil’s Kettle Falls.

The western side of the split drops into a giant hole, gulping up massive amounts of water and taking them to a place that’s yet to be discovered. The disappearing act has perplexed onlookers and scientists for years. Dyes and ping pong balls have been plunked in with the intent of tracing the path of the water, but were never seen again. While it’s assumed the pothole somehow finds an underground outlet beneath Lake Superior or reunites with its other half, so far the trail remains cold.

Riverbed potholes (or kettles) aren’t uncommon, but they’re usually only surface erosions and not entire channels through which water can flow. Other explanations such as a fault line, a underground cave, or a lava tube have been largely dismissed, leaving the mystery wide open. One (highly unlikely) legend states that someone even pushed a car into the fissure in pursuit of the truth. GPS and cameras are rendered useless once they’re subterranean, and the nature of the chasm makes it impossible for humans to descend and follow the trail. Which means for now, it’s just another one of Mother Nature’s great puzzles.

Since a photo doesn't really do justice to the phenomenon, here are a couple of videos so you can see the Devil's Kettle in action. 

Original image
iStock
arrow
science
Geological Map Shows the Massive Reservoir Bubbling Beneath Old Faithful
Original image
iStock

Yellowstone National Park is home to rivers, waterfalls, and hot springs, but Old Faithful is easily its most iconic landmark. Every 45 to 125 minutes, visitors gather around the geyser to watch it shoot streams of water reaching up to 100 feet in the air. The punctual show is one of nature’s greatest spectacles, but new research from scientists at the University of Utah suggests that what’s going on at the geyser’s surface is just the tip of the iceberg.

The study, published in the journal Geophysical Research Letters, features a map of the geological plumbing system beneath Old Faithful. Geologists have long known that the eruptions are caused by water heated by volcanic rocks beneath the ground reaching the boiling point and bubbling upwards through cracks in the earth. But the place where this water simmers between appearances has remained mysterious to scientists until now.

Using 133 seismometers scattered around Old Faithful and the surrounding area, the researchers were able to record the tiny tremors caused by pressure build-up in the hydrothermal reservoir. Two weeks of gathering data helped them determine just how large the well is. The team found that the web of cracks and fissures beneath Old Faithful is roughly 650 feet in diameter and capable of holding more than 79 million gallons of water. When the geyser erupts, it releases just 8000 gallons. You can get an idea of how the reservoir fits into the surrounding geology from the diagram below.

Geological map of geyser.
Sin-Mei Wu, University of Utah

After making the surprising discovery, the study authors plan to return to the area when park roads close for the winter to conduct further research. Next time, they hope to get even more detailed images of the volatile geology beneath this popular part of Yellowstone.

Original image
iStock
arrow
Big Questions
Just How Hot Is Lava?
Original image
iStock

Like the bubbling cheese of a pizza consumed too quickly, lava has been anointed as one of the most scorching substances on Earth. But just how hot is lava? How quickly could it consume your flesh and destroy everything in its path?

You may already know that lava is actually molten rock that oozes or spurts out of volcanoes because of the extreme temperatures found miles deep in the Earth. As the rocks melt, they begin to rise toward the surface. (Lava is typically referred to as magma until it reaches the surface.) As you can imagine, the heat that's needed to melt rock is pretty staggering. Cooler lava—relatively speaking—could be around 570°F, about the same as the inside of your typical pizza oven. On the extreme side, volcanoes can produce lava in excess of 2120°F, according to the United States Geological Survey.

Why is there so much variation? Different environments produce different chemical compositions and minerals that can affect temperature. Lava found in Hawaii from basalt rock, for example, tends to be on the hotter side, while minerals like the ones found near the Pacific Northwest's Mt. Saint Helens could be a few hundred degrees cooler.

After lava has erupted and its temperature begins to lower, it will eventually return to solid rock. Hotter lava flows more quickly—perhaps several feet per minute—and then slows as it cools, sometimes traveling only a couple of feet in a day.

Because moving lava takes its sweet time getting anywhere, there's not much danger. But what if you did, in some tremendously unfortunate circumstance, get exposed to lava—say, by being thrown into a lava pit like a villain in a fantasy film? First, you're unlikely to sink rapidly into it. Lava is three times as dense as water and won't simply move out of the way as quickly. You would, however, burn like a S'more at those temperatures, even if you wouldn't quite melt. It's more likely the radiant heat would singe you before you even made contact with the hypothetical lava lake, or that you'd burst into flames on contact.

Because lava is so super-heated, you might also wonder how researchers are even able to measure its temperature and answer the burning question—how hot is lava, exactly—without destroying their instrumentation. Using a meat thermometer isn't the right move, since the mercury inside would boil while the glass would shatter. Instead, volcanologists use thermocouples, or two wires joined to the same electrical source. A user can measure the resistance of the electricity at the tip and convert it to a readable temperature. Thermocouples are made from ceramic and stainless steel, and both have melting points higher than even the hottest lava. We still don't recommend using them on pizza.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios