Watch Bill Nye Teach Evolution—Using Emojis

What better way to celebrate World Emoji Day than with a video of Generation Y’s other favorite face—we’re talking Bill Nye, of course—using emojis to explain science?

In this video from Mashable, the Science Guy breaks down the evolutionary process, outlining how life on Earth began nearly four billion years ago. Accompanying his lesson: molecules comprised of yellow smiley faces. (Don’t worry, the dancing girls also make an appearance.)

Even if you’re not fluent in emoji, Nye’s speech serves as a fun, two-minute refresher on the mechanisms that made it possible for us to sit here today, browsing YouTube for cat videos and, naturally, sending emoji-filled texts to our pals.

[h/t Mashable

nextArticle.image_alt|e
Courtesy of October Films
This Scientist's Idea of the 'Perfect' Human Body Is Kind of Terrifying
Courtesy of October Films
Courtesy of October Films

The perfect human body has the legs of an ostrich, the heart of a dog, and the eyes of an octopus, according to anatomist Alice Roberts. And it’s utterly terrifying.

With the help of anatomical artist Scott Eaton and special effects designer Sangeet Prabhaker, Roberts created a life-size replica of herself that fixes many design flaws inherent to the human body, Motherboard reports. Roberts unveiled the sculpture on April 23 at the Science Museum in London. On June 13, the BBC released a documentary about the project.

Among the flaws Roberts’s sculpture corrects are humans’ inferior ears, spine, and lungs. Roberts borrowed anatomy from reptiles, birds, and other mammals to create a Frankenstein-esque creature straight from the island of Dr. Moreau.

The sculpture of Alice 2.0, left, with Alice Roberts, right
Courtesy of October Films

The sculpture has legs like an ostrich because, as Roberts says on her website, the human knee is complex and prone to failure. Like humans, ostriches are bipedal, but they are far better runners. Bird-like lungs that keep air flowing in one direction, not two, make running and other aerobic activities easier for the perfect human to manage. And a chimpanzee’s sturdier spine and a dog’s heart (which has more connected arteries, leading to lower heart attack risk) make Roberts’s alternate self more resistant to injury and disease.

Roberts’s ideal human body also has skin like a frog that can change shades based on the environment, and large, bat-like ears that amplify sound. Roberts also fixed humans’ backwards retina, which produces a natural blind spot, by borrowing from octopus eye anatomy.

Perhaps most disturbing of all is the baby head poking out of the sculpture’s marsupial pouch. Roberts says marsupial pregnancy would be far easier on the human body and more convenient for parents on the go.

“This could be a human fit for the future,” Roberts says at the end of a trailer for her BBC documentary.

[h/t Motherboard]

nextArticle.image_alt|e
iStock
Scientists Accidentally Make Plastic-Eating Bacteria Even More Efficient
iStock
iStock

In 2016, Japanese researchers discovered a type of bacteria that eats non-biodegradable plastic. The organism, named Ideonella sakaiensis, can break down a thumbnail-sized flake of polyethylene terephthalate (PET), the type of plastic used for beverage bottles, in just six weeks. Now, The Guardian reports that an international team of scientists has engineered a mutant version of the plastic-munching bacteria that's 20 percent more efficient.

Researchers from the U.S. Department of Energy's National Renewable Energy Laboratory and the University of Portsmouth in the UK didn't originally set out to produce a super-powered version of the bacteria. Rather, they just wanted a better understanding of how it evolved. PET started appearing in landfills only within the last 80 years, which means that I. sakaiensis must have evolved very recently.

The microbe uses an enzyme called PETase to break down the plastic it consumes. The structure of the enzyme is similar to the one used by some bacteria to digest cutin, a natural protective coating that grows on plants. As the scientists write in their study published in the journal Proceedings of the National Academy of Sciences, they hoped to get a clearer picture of how the new mechanism evolved by tweaking the enzyme in the lab.

What they got instead was a mutant enzyme that degrades plastic even faster than the naturally occurring one. The improvement isn't especially dramatic—the enzyme still takes a few days to start the digestion process—but it shows that I. sakaiensis holds even more potential than previously expected.

"What we've learned is that PETase is not yet fully optimized to degrade PET—and now that we've shown this, it's time to apply the tools of protein engineering and evolution to continue to improve it," study coauthor Gregg Beckham said in a press statement.

The planet's plastic problem is only growing worse. According to a study published in 2017, humans have produced a total of 9 billion tons of plastic in less than a century. Of that number, only 9 percent of it is recycled, 12 percent is incinerated, and 79 percent is sent to landfills. By 2050, scientists predict that we'll have created 13 billion tons of plastic waste.

When left alone, PET takes centuries to break down, but the plastic-eating microbes could be the key to ridding it from the environment in a quick and safe way. The researchers believe that PETase could be turned into super-fast enzymes that thrives in extreme temperatures where plastic softens and become easier to break down. They've already filed a patent for the first mutant version of the enzyme.

[h/t The Guardian]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios