CLOSE
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

7 Scientific Instruments 'New Horizons' Uses to Study Pluto

NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Just 10 minutes ago, NASA’s New Horizons spacecraft made the closest encounter with Pluto the human race has ever had—a flyby for the record books. After its science payload gathers reams of data just 7800 miles above the surface, New Horizons spins around and begins collecting data on Pluto’s night side, which will be softly illuminated by Charon, its largest moon. In addition to unlocking the mysteries of Pluto, the data collected by New Horizons will help explain the origins of the outer solar system and how planet-satellite systems evolve.

We'll have more updates for you once NASA releases the first images from the flyby, which should arrive at Johns Hopkins University's Applied Physics Laboratory (APL), mission headquarters, at 9:02 p.m. ET. In the meantime, learn about the seven scientific instruments aboard New Horizons that are exploring the Pluto system for us.

1. Alice

Alice is the spacecraft’s ultraviolet imaging spectrometer. Its job is to figure out the atmosphere of Pluto, and gain some insight into the atmosphere around Charon. Alice will analyze the atomic and molecular makeup of the atmosphere, determining what’s there and in what quantities, and probe its density and temperature. It'll also determine if Pluto has an ionosphere, or upper atmosphere.

2. Ralph

Ralph is the spacecraft’s mapping instrument. Its job is to create composition and temperature maps of the surfaces of Pluto, its moons, and any Kuiper Belt objects to be encountered years from now. The instrument also records geology and morphology. Ralph’s resolution is about 10 times better than the human eye and uses less than half the power of a child’s nightlight. The APL describes Ralph as the “main ‘eyes’ of New Horizons.” Together, Ralph and Alice are named for the Kramdens on the 1950’s television series The Honeymooners.

3. REX

Short for Radio Science Experiment, REX will determine the sizes and densities of Pluto, Charon, and a future Kuiper Belt object, and measure the temperature (both during the day and at night) and density of Pluto’s atmosphere down to the surface. It will also measure the density of Pluto’s ionosphere.

REX is especially exciting in that it will use a technique called an “uplink radio experiment.” Here’s how it works: As the probe passes behind Pluto, NASA’s Deep State Network will send powerful radio signals to REX. The radio waves will pass through Pluto’s atmosphere on the way to New Horizons, and will bend certain ways depending on the temperature and molecular weights of gasses encountered. This is the opposite of how such scans are normally performed; until now, it’s the spacecraft that would send the radio signals to Earth. Because of the mindboggling speed and distance involved with New Horizons, that would be impossible. REX is a huge advance in outer planetary exploration.

4. LORRI

The Long Range Reconnaissance Imager, or LORRI, "is essentially a digital camera with a large telephoto telescope—only fortified to operate in the cold, hostile environs near Pluto,” according to the New Horizons team. LORRI is so powerful that on closest approach, it was able to resolve features as small as football fields. The instrument began snapping shots of the Pluto system at the start of 2015 and is responsible for pretty much every shot we’ve seen so far. The camera only takes black-and-white photographs; color filters were left out of the design in order to keep things simple, and to ensure an extremely high light-sensitivity level. (Light levels are 1000 times lower in the Pluto system than on Earth.) The Ralph instrument provides the color data for LORRI images.

5. SWAP

Solar Winds at Pluto, or SWAP, measures the interaction of Pluto with the charged particles from the Sun. The instrument will record the rate at which the atmosphere escapes from Pluto. (Because of the planet’s relatively weak gravity acceleration, it is thought that around 165 pounds of material escape per second.) Such measurements help planetary scientists determine the density and structure of Pluto’s atmosphere.

6. PEPSSI

PEPSSI, short for Pluto Energetic Particle Spectrometer Science Investigation, is both a missed sponsorship opportunity and the companion instrument to SWAP. Once neutral atoms escape Pluto, they are charged by the Sun and swept away by the solar winds. Like SWAP, PEPSSI will help scientists determine the escape rate of Pluto’s atmosphere, and figure out the atmosphere’s composition.

7. SDC

The Venetia Burney Student Dust Counter, or SDC, was created by students at University of Colorado at Boulder. Collisions involving asteroids, comets, and Kuiper Belt objects produce microscopic dust particles. Likewise, dust in the Pluto system can come from objects impacting Pluto’s moons. By counting and measuring space dust along the way, scientists can model collision rates and activity in the outer solar system. According to APL, this is the first time students have designed, built, and flown an instrument on a NASA planetary mission. The SDC is named for Venetia Burney, who in 1930, as an 11-year-old girl, gave the planet newly discovered by Clyde Tombaugh a name: Pluto.

arrow
History
When Chuck Yeager Tweeted Details About His Historic, Sound Barrier-Breaking Flight

Seventy years ago today—on October 14, 1947—Charles Elwood Yeager became the first person to travel faster than the speed of sound. The Air Force pilot broke the sound barrier in an experimental X-1 rocket plane (nicknamed “Glamorous Glennis”) over a California dry lake at an altitude of 25,000 feet.

In 2015, the nonagenarian posted a few details on Twitter surrounding the anniversary of the achievement, giving amazing insight into the history-making flight.

For even more on the historic ride, check out the video below.

nextArticle.image_alt|e
Mrs. John Herschel, Wikimedia Commons
8 Stellar Facts About the Most Accomplished Female Astronomer You’ve Never Heard Of
Mrs. John Herschel, Wikimedia Commons
Mrs. John Herschel, Wikimedia Commons

Caroline Herschel (1750-1848) was a German woman who made great contributions to science and astronomy. 

1. SHE WAS THE FIRST WOMAN TO DISCOVER A COMET.

Herschel spotted the comet (called 35P/Herschel-Rigollet) in December of 1788. Because its orbital period is 155 years, 35P/Herschel-Rigollet will next be visible to humans in the year 2092.

2. SHE INITIALLY WORKED AS A HOUSEKEEPER.

In her early twenties, Herschel moved from Germany to England to be a singer. Her brother William (the astronomer who discovered the planet Uranus and infrared radiation) gave her singing lessons, and she was his housekeeper. She later became his assistant, grinding and polishing the mirrors for his telescopes.

3. BUT SHE LATER TURNED HER REAL PASSION INTO A PAYING GIG.

Herschel was the first female scientist to ever be paid for her work. Starting in 1787, King George III paid her £50 per year to reward her for her scientific discoveries.

4. SHE WAS TECHNICALLY A LITTLE PERSON.

Herschel was only 4 feet 3 inches tall—her growth was stunted due to typhus when she was 10 years old.

5. SHE BROKE BARRIERS, EARNING RESPECT FROM THE HERETOFORE MALE-ONLY SCIENTIFIC COMMUNITY.

Herschel was the first woman to receive a Gold Medal from London’s Royal Astronomical Society, in 1828. The second woman to receive one was well over 150 years later, in 1996.

6. SHE CHEATED AT MATH ... KIND OF.

Because Herschel was female and thus wasn’t allowed to learn math as a child, she used a cheat sheet with the multiplication tables on it when she was working.

7. EARTH'S MOON HONORS HER LEGACY.

By NASA / LRO_LROC_TEAM [Public domain], via Wikimedia Commons

A crater on the moon is named in honor of Herschel—it’s called C. Herschel. The small crater is located on the west side of Mare Imbrium, one of the moon's large rocky plains.

8. SHE GARNERED AWARDS WELL INTO HER NINETIES.

For her 96th birthday, Prussian King Frederick William IV authorized that Herschel receive an award: the Gold Medal for Science.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios