iStock
iStock

The Woman Who Invented Aquariums

iStock
iStock

Without a 19th century seamstress named Jeanne Villepreux-Power, there might be no fish tanks. Villepreux-Power, who was one of the foremost cephalopod researchers of her era, invented the modern aquarium. Yet she’s largely been forgotten, in part due to an unfortunate shipwreck. 

Villepreux-Power was born in rural France in 1794. She became a noted Parisian dressmaker, skilled enough to be hired to embroider clothing for royal weddings. But when she married a wealthy merchant and moved to Italy as a young woman, she ditched embroidery for scientific pursuits, as author Helen Scales describes in her book on seashells, Spirals in Time. Villepreux-Power went on to observe tool use in octopi and discover the way Argonauta argo, the paper nautilus, secretes its own shell. 

In the course of her pioneering research on the paper nautilus, she had to figure out a way to observe the creature in the lab. So she invented the modern glass aquarium in 1832. 

Image Credit: Comingio Merculianovia Wikimedia Commons // Public Domain


She invented three different types of aquariums, according to an article in the bulletin of the Malacological Society of London. One was designed to be used indoors, one placed in a cage to be set in shallow water, and one designed to be anchored to the sea floor. She used these to observe the paper nautilus developing shells as larvae, and repair them by secreting a special substance when the shell was damaged. She also discovered that a small, octopus-looking organism found with paper nautilus eggs was actually the male Argonauta

Unfortunately, all of Villepreux-Power’s books and papers were lost at sea while the scientist and her husband were moving from Sicily to London. The couple had traveled by land, but had sent their belongings on a ship that sank in a storm. Devastated, Villepreux-Power stopped researching, leaving much of her contributions to early marine animal research unheralded. So go ahead and pour one out for her whenever you see a particularly nice fish tank.

[h/t: Science News via Smithsonian]

nextArticle.image_alt|e
iStock
arrow
Animals
How Bats Protect Rare Books at This Portuguese Library
iStock
iStock

Visit the Joanina Library at the University of Coimbra in Portugal at night and you might think the building has a bat problem. It's true that common pipistrelle bats live there, occupying the space behind the bookshelves by day and swooping beneath the arched ceilings and in and out of windows once the sun goes down, but they're not a problem. As Smithsonian reports, the bats play a vital role in preserving the institution's manuscripts, so librarians are in no hurry to get rid of them.

The bats that live in the library don't damage the books and, because they're nocturnal, they usually don't bother the human guests. The much bigger danger to the collection is the insect population. Many bug species are known to gnaw on paper, which could be disastrous for the library's rare items that date from before the 19th century. The bats act as a natural form of pest control: At night, they feast on the insects that would otherwise feast on library books.

The Joanina Library is famous for being one of the most architecturally stunning libraries on earth. It was constructed before 1725, but when exactly the bats arrived is unknown. Librarians can say for sure they've been flapping around the halls since at least the 1800s.

Though bats have no reason to go after the materials, there is one threat they pose to the interior: falling feces. Librarians protect against this by covering their 18th-century tables with fabric made from animal skin at night and cleaning the floors of guano every morning.

[h/t Smithsonian]

nextArticle.image_alt|e
iStock
arrow
Animals
Honey Bees Can Understand the Concept of Zero
iStock
iStock

The concept of zero—less than one, nothing, nada—is deceptively complex. The first placeholder zero dates back to around 300 BCE, and the notion didn’t make its way to Western Europe until the 12th century. It takes children until preschool to wrap their brains around the concept. But scientists in Australia recently discovered a new animal capable of understanding zero: the honey bee. According to Vox, a new study finds that the insects can be taught the concept of nothing.

A few other animals can understand zero, according to current research. Dolphins, parrots, and monkeys can all understand the difference between something and nothing, but honey bees are the first insects proven to be able to do it.

The new study, published in the journal Science, finds that honey bees can rank quantities based on “greater than” and “less than,” and can understand that nothing is less than one.

Left: A photo of a bee choosing between images with black dots on them. Right: an illustration of a bee choosing the image with fewer dots
© Scarlett Howard & Aurore Avarguès-Weber

The researchers trained bees to identify images in the lab that showed the fewest number of elements (in this case, dots). If they chose the image with the fewest circles from a set, they received sweetened water, whereas if they chose another image, they received bitter quinine.

Once the insects got that concept down, the researchers introduced another challenge: The bees had to choose between a blank image and one with dots on it. More than 60 percent of the time, the insects were successfully able to extrapolate that if they needed to choose the fewest dots between an image with a few dots and an image with no dots at all, no dots was the correct answer. They could grasp the concept that nothing can still be a numerical quantity.

It’s not entirely surprising that bees are capable of such feats of intelligence. We already know that they can count, teach each other skills, communicate via the “waggle dance,” and think abstractly. This is just more evidence that bees are strikingly intelligent creatures, despite the fact that their insect brains look nothing like our own.

Considering how far apart bees and primates are on the evolutionary tree, and how different their brains are from ours—they have fewer than 1 million neurons, while we have about 86 billion—this finding raises a lot of new questions about the neural basis of understanding numbers, and will no doubt lead to further research on how the brain processes concepts like zero.

[h/t Vox]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios