NASA/JPL-Caltech/SETI Institute
NASA/JPL-Caltech/SETI Institute

Jupiter's Moon Europa May Be Streaked With Sea Salt

NASA/JPL-Caltech/SETI Institute
NASA/JPL-Caltech/SETI Institute

Europa, one of Jupiter’s many moons, appears crisscrossed with a dark substance, like caramel drizzled on a scoop of ice cream. Long a mystery to scientists, these streaks may be sea salt from an ocean beneath the planet’s icy surface, a new study finds. 

At NASA’s Jet Propulsion Laboratory (JPL) in California, two scientists have built a kind of “Europa in a can,” a miniature simulation of a patch of Europa’s surface that mimics the moon’s temperature, pressure, and radiation exposure. In a new study in Geophysical Research Letters, they lay out evidence from their experiments that Europa’s distinctive discoloration stems from sodium chloride rising from the ocean below, in a process that may provide further evidence of the moon’s habitability. 

A laboratory setup at NASA’s Jet Propulsion Laboratory that mimics Europa’s conditions. Image Credit: NASA/JPL-Caltech

JPL’s Kevin Hand and Robert Carlson placed regular salt in a vacuum chamber at Europa’s surface temperature (-280 degrees Fahrenheit) and blasted it with an electron beam to mimic the radiation present on the moon. Ten hours later—the Europa equivalent of a century on Earth—the white salt samples turned yellow-brown, similar to the appearance of the streaks on Europa seen by NASA’s Galileo mission. The longer the samples stayed in the vacuum exposed to the radiation, the darker they became. 

There’s no telescope on Earth that can observe Europa accurately enough to prove this hypothesis, but it does bolster the case for sending future spacecraft there to explore. Scientists theorize that Europa could be one of our best chances of finding life in the wide universe beyond Earth’s atmosphere, and research like this can help determine whether the moon has a good shot at being habitable before we send a multi-billion-dollar probe.  

[h/t: Gizmodo]

nextArticle.image_alt|e
iStock
13 Scientific Explanations for Everyday Life
iStock
iStock

Science holds our lives together. It explains everything from why bread rises to why you need gas to power your car. In his book Atoms Under the Floorboards, author Chris Woodford lays out the abstract science that underlies the everyday world, from the big (how do skyscrapers stay up?) to the small (why does my laptop get hot when I’m watching Netflix?). Along the way, he also calculates the answers to whimsical questions like, “How many people would I have to gather together to keep my house warm without heat?” (A lot, but not as many as you'd think.) Here are 13 things we learned about the world through his eyes.

1. A POWER DRILL COULD SET YOUR HOUSE ON FIRE, IN THEORY.

Because of friction, electric drills generate heat. The motor, the drill bit, and the wall all get hot. It takes about 2000 joules of energy to heat one kilogram of wood just 1°C. Assuming a typical power drill uses 750 watts of electricity, and it puts out 750 joules of energy, Woodford calculates that it would take just four minutes to set fire to a wooden wall in a 68°F room.

2. STICKY NOTES COME OFF EASILY BECAUSE THEIR ADHESIVE IS UNEVEN.

Post-it Notes feature a plastic adhesive that is spread out in blobs across the paper. When you slap a Post-it onto your bulletin board, only some of these blobs (technically called micro-capsules) touch the surface to keep the note stuck there. Thus, you can unstick it, and when you go to attach it to something else, the unused blobs of glue can take over the adhesive role. Eventually, all the capsules of glue will get used up or clogged with dirt, and the sticky note won't stick anymore.

3. GUM IS CHEWY BECAUSE IT'S MADE OF RUBBER.

Early gums got their elastic texture from chicle, a natural type of latex rubber. Now, your bubble gum is made with synthetic rubbers like styrene butadiene (also used in car tires) or polyvinyl acetate (also used in Elmer’s glue) to mimic the effect of chicle.

4. OFFICE BUILDINGS ARE EVER-SO-SLIGHTLY TALLER AT NIGHT.

After all the employees go home, tall office buildings get just a little taller. A 1300-foot-tall skyscraper shrinks about 1.5 millimeters under the weight of 50,000 occupants (assuming they weigh about the human average).

5. A LEGO BRICK CAN SUPPORT 770 POUNDS OF FORCE.

LEGOs can support four to five times the weight of a human without collapsing. They are strong enough to support a tower 375,000 bricks tall, or around 2.2 miles high.

6. POLISHING SHOES IS LIKE FILLING IN A ROAD'S POTHOLES.

Regular leather appears dull to the eye because it’s covered in teeny-tiny scrapes and scratches that scatter whatever light hits the material. When you polish a leather shoe, you coat it in a fine layer of wax, filling in those crevices much like a road crew smoothes out a street by filling in its potholes. Because the surface is more uniform, rays of light bounce back toward your eye more evenly, making it look shiny.

7. YOU COULD HEAT YOUR HOUSE WITH JUST 70 PEOPLE.

People give off body heat, as anyone who has been trapped in a small crowded room knows. So how many people would it take to warm up your home with just body heat in the winter? About 70 people in motion, or 140 people still, figuring that humans radiate 100-200 watts of heat normally and that the house uses four electric storage heaters.

8. DENSITY EXPLAINS WHY COLD WATER FEELS COLDER THAN AIR AT THE SAME TEMPERATURE.

Because water is denser than air, your body loses heat 25 times more quickly while in water than it would in air at the same temperature. Water's density gives it a high specific heat capacity, meaning it takes a lot of heat to raise its temperature even a little, and it's very good at retaining heat or cold (the reason why hot soup stays hot for a long time, and why the ocean is much cooler than land). Water is a great conductor, so it's very effective at transferring that heat or cold to your body.

9. WATER CLEANS WELL BECAUSE IT HAS ASYMMETRICAL MOLECULES.

Because water molecules are triangular—made of two hydrogen atoms stuck to one oxygen atom—they have slightly different charges on their different sides, kind of like a magnet. The hydrogen end of the molecule is slightly positive, and the oxygen side is slightly negative. This makes water excellent at sticking to other molecules. When you wash away dirt, the water molecules stick to the dirt and pull it away from whatever surface it was on. This is also the reason water has surface tension: it’s great at sticking to itself.

10. THE "PULSE" SETTING ON A BLENDER WORKS BETTER BECAUSE OF TURBULENCE.

When your blender stops chopping up food and begins just spinning it around in circles, it’s because everything inside is spinning at the same rate. Instead of actually blending ingredients together, it’s experiencing laminar flow—all the layers of liquid are moving in the same direction with constant motion. The pulse function on the blender introduces turbulence, so instead of the fruit chunks rolling around the side of the blender, they fall into the center and get blended up into a smoothie.

11. BABIES' BODIES CONTAIN MORE WATER THAN ADULTS.'

Adults are around 60 percent water. By contrast, newborn babies are about 80 percent water. But that percentage quickly drops: A year after birth, kids' water content is down to around 65 percent, according to the USGS.

12. GLASS BREAKS EASILY BECAUSE ITS ATOMS ARE LOOSELY ARRANGED.

Unlike other solid materials, like metals, glass is made up of amorphous, loosely packed atoms arranged randomly. They can’t absorb or dissipate energy from something like a bullet. The atoms can’t rearrange themselves quickly to retain the glass’s structure, so it collapses, shattering fragments everywhere.

13. CALORIE COUNTS ARE CALCULATED BY INCINERATING FOOD.

Calorie values on nutritional labels estimate the energy contained in the food within the package. To figure out how much energy is in a specific food, scientists use a calorimeter. One type of calorimeter essentially burns up the food inside a device surrounded by water. By measuring how much the temperature of the water changes in the process, scientists can determine how much energy was contained in the food.

This story originally ran in 2015.

nextArticle.image_alt|e
iStock
Popcorn Might Be the Cheap, Biodegradable Robot Power Source of the Future
iStock
iStock

If you've ever put a flat bag of kernels into the microwave and pulled out a full bag of fluffy popcorn two minutes later, you've witnessed a fascinating bit of food chemistry at work. Now, IEEE Spectrum reports that scientists are looking into applying the unique properties of popcorn to robotics.

For their study, presented at this year's IEEE International Conference on Robotics and Automation, Cornell scientists stuffed the movable parts of a robot (a.k.a. the actuators) with unpopped kernels of corn. Usually actuators are powered by air, hydraulics, or electric currents, but as the researchers found, popcorn works as a cheap single-use alternative.

When heat is applied to popcorn kernels, the water trapped inside them turns to steam, creating enough pressure to peel back the tough exterior and release the starchy endosperm. A sudden drop in pressure causes the endosperm to quickly expand, while the cool outside air solidifies it.

The results can be dramatic: When popping extra small white kernels, the cheapest popcorn tested, researchers saw them expand to 15.7 times their original size. Inside a soft robot, this amounts to building interior pressure that moves the actuator one way or another.

A similar effect can be achieved using air, and unlike popcorn, air can be pumped more than once. But popcorn does offer some big advantages: Using popcorn and heat is cheaper than building air pumps, plus popcorn is biodegradable. For that reason, the researchers present it as an option for robots that are designed to be used once and decompose in the environments they're left in.

You can get an idea of how a popcorn-powered robot works in the video below.

[h/t IEEE Spectrum]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios