CLOSE
Jessanne Collins
Jessanne Collins

A Day in the Outback with Australia's Most Popular Postman

Jessanne Collins
Jessanne Collins

No one loves the mailman quite like outback Australians do. It’s mid-afternoon when the truck pulls into the dusty driveway in front of a small ranch house. The door bangs open and a small blond boy comes running down the walk pushing a big yellow Tonka. He wraps a hearty hug around the mailman’s legs—and receives a pat on the head in return—before accepting the delivery of letters into the bed of his truck.

As the boy pushes his haul back toward the house, his mother and a few other women step out. They, too, greet this mailman with easy familiarity, eager to catch up on local gossip and news for a few minutes before he continues his route.

If the scene sounds unlikely, it’s because this is no ordinary mail route. Peter Rowe’s path carves a 372-mile loop through a landscape that looks extraterrestrial: the South Australian outback. Rowe doesn’t look like a typical mailman. He’s in his sixties, with friendly, round features, and today he’s wearing a polo shirt and jeans. And for that matter, he drives no ordinary mail truck: It’s a rugged, caterpillar-like four-wheel-drive minibus that can hold a dozen passengers and still leave ample space for supplies and deliveries. For a decade, Rowe has been traveling this route twice a week, delivering mail and sundries to the few human outposts that dot this endless landscape. On an average day, it’s a 13-hour trip. To pass the time he invites tourists like me to come with him.

Jessanne Collins

Australia’s outback holds a special place in the imagination. It’s a destination synonymous in many American minds with snakes and scorpions, big rocks, and swashbuckling adventurers. People come to marvel at the stunning desert scenery and the diverse wildlife. But there’s something more mystical than that too. It’s cliché to say that people go Down Under for a perspective shift, but it does feel like a different planet. The thing that keeps awing me is the way my sense of time has changed. I don’t mean that things move slower than they do in New York City, where I live, though of course they do. It’s something deeper.

It’s classic for Americans visiting Europe for the first time to be stunned at the medieval churches: How could anything be that old? In Australia’s outback, this same sense is amplified by 1000—and it’s not about the architecture, but the landscape. The outback is a defiant reminder of how ancient our planet is. Once upon a time—or 100 million years ago, more precisely—this bone-dry, pancake-flat sprawl was the bed of the Eromanga Sea; an area nearby is rife with the fossils of long-necked marine reptiles called plesiosaurs. (And baby plesiosaurs: Scientists think it was a shallow area good for breeding and spawning.) At still another time—about 250 million years ago—there were forests here, as evidenced by the glittering patches of gypsum and petrified wood that speckle the soft desert sand. It’s impossible not to feel miniscule standing here.

I’m from a tiny town in New England, population less than 2000. There were 37 kids in my high school class. I thought I knew a thing or two about what it’s like to be in the middle of nowhere. In Australia, I learned I’d been wrong. So among the many things I was curious to find out on my day with Rowe, chief was this: What is it like to live here?

Jessanne Collins

We depart Coober Pedy, a small mining township a 90-minute flight from Adelaide, just after 8 a.m. The desert air is still cool, though it’ll climb into the 90s by midday—that’s seasonal for October, which is among the more temperate months.

Most people who live in Coober Pedy came to mine opal deposits, and it was opal that brought Rowe here in 1966 from his hometown of Melbourne. “I thought I’d go and make a million dollars,” he says. Some miners do strike it lucky; others eke out a modest living. Rowe mined for a while, then opened a pottery shop. In the early 2000s, he started giving tours of desert attractions, and soon he took over the mail delivery contract. These days, his tour company combines the two. Today’s freight, besides the mail and me, includes one retired Australian gentleman, a young Austrian couple, and a tattooed German guy.

It doesn’t take long to get out of town, and it’s just minutes before it feels as though we’re miles from civilization. Out here it’s only sand and sky, one flat reddish plain and one blue one divided by the horizon like a seam. The road is flat, wide, and unpaved, making four-wheel-drive essential. Soon we pull to a stop at a wide gate. On either side is a delicate-looking wire barrier: Australia’s famous Dingo Fence (the world’s longest at 3500 miles). Erected in the 1880s, it keeps ferocious wild dogs out of the southeastern territories so that farmers can raise sheep there. On the other side of it, where we’re about to go, nobody raises sheep. Rowe hops out, unlocks the gate, guides the truck through, and locks it again behind us. “Welcome to cattle country,” he says.

The land here is divided into huge cattle stations. The largest, Anna Creek, covers almost 10,000 square miles—bigger than Israel. Because the desert land isn’t vegetation heavy, the cattle population isn’t dense. They roam free for miles, grazing on desert saltbushes while modern cowboys keep an eye on them with motorcycles and helicopters.

At the first station, there’s a small cluster of men waiting to greet Rowe and help him unload. They make small talk while we tourists wander and take in the scenery. There’s not a lot to look at, just a house and a couple of buildings to store farm equipment. The scene is the same at the next station, and the next: just a few people, warmly greeting Rowe.

As we drive, I realize the mailman is the one reliable visitor they’ll see all week. The neighboring ranches are miles away, and it would take hours to get to the nearest store—which is why families typically get industrial-sized parcels of groceries delivered every few months and their weekly perishables via Rowe. While it’s nice that Rowe is toting extra goods, you get the sense that it’s neither the letters nor the produce he’s carrying that make him so popular, but simply the human connection he provides.

“It’s a buddy system out here,” Rowe says. It has to be. People rely on CB radios to communicate between ranches, so neighbors can help when someone has truck trouble. Doctors are reachable by radio. People call in with symptoms and get a diagnosis; if it’s serious they’ll receive a visit from the Royal Flying Doctor Service, the fleet of 63 aircraft that service the 290,000 people in Australia’s most remote regions. For many years, even kids attended school by radio. These days they do it on the Internet: Though there are no high-speed lines here, the government has subsidized a satellite system that gets the outback online. Hearing this, I think about my own high school and feel downright cosmopolitan.

Jessanne Collins

As we drive, sometimes with an hour or more between stops, Rowe tells stories. He talks about the landscape, the way every couple of years after a rare soaking rain the whole desert will suddenly burst to life with colorful flowers. Desert flowers have a peculiar biology. They can insulate their seeds for long periods of drought and then suddenly blossom after a good shower.

Looking out, I think about how what seems so overwhelmingly empty is actually full of hidden life. There are the dingoes, of course—the world’s longest fence isn’t fooling around. There are also intimidating lizards. Late in the afternoon we screech to a halt when Rowe spots what could be a perentie, the largest lizard native to Australia, renowned for its sharp claws and venom. At an average length of six feet, they’re not the sort of thing you want to meet, in part because they tend to run up the tallest thing around when they’re threatened. (In a treeless landscape, that might mean you.) Fortunately, they’re also notoriously shy. We pile out to get a better look, but there are no lizards in sight.

Occasionally, we stumble across evidence of people. We come upon ruins from an abandoned railroad: a rusted train bridge, a trackbed that’s slowly being reclaimed by the wind and the sand. There’s the burnt-out husk of a mid-century car nearby, a startling sight in the middle of nowhere. Rowe, of course, knows the story behind it. One night decades ago, a local ranch hand made the unwise decision to drive across the train bridge. A train came along and, unable to outrun it, the man had to leap for safety. He was fine; the car, as we can see, was toast.

At dinnertime we pull into a town called William Creek, which consists of a restaurant/hotel and one parking meter (the locals’ idea of a joke). The permanent population here is six. Humans are outnumbered by a huge flock of pink and white galahs—a common and very vocal cockatoo—that alight in a tree outside the restaurant as dusk falls and a huge full moon starts to rise. The bar inside the hotel, though, could almost be in Brooklyn; it’s cozy and well stocked with canned beer, artfully wallpapered with license plates and business cards and trucker hats hung from rafters. Not many people pass through—tonight there are just a couple of college-age cowkids from the nearby station hanging out—but those who do seem compelled to leave some evidence of their visit.

By the time we’re on the road back to Coober Pedy, it’s late and dark, perfect for some of the best stargazing in the Southern hemisphere. Or it would be, if not for that full moon. We pull over to look for constellations anyway. “Pull over” is the wrong phrase—there are no other cars, so we stop in the middle of the road and wander a short way into the silent desert to see what we can see. Rowe points out the Southern Cross, a constellation visible only in the southern hemisphere, which again gives me, a lifelong northern hemisphere–dwelling sky watcher, the sense that I’ve left my home planet.

It’s a little unsettling knowing that the six of us are the only humans for miles in any direction. I’m not sure I’ve ever felt so remote. Then, behind us, the CB radio in Rowe’s truck crackles to life, a warm greeting cutting through the cool night air. The buddy system is at work. We’re not alone after all.


nextArticle.image_alt|e
Dodo: © Oxford University, Oxford University Museum of Natural History. Background: iStock
arrow
science
Head Case: What the Only Soft Tissue Dodo Head in Existence Is Teaching Scientists About These Extinct Birds
Dodo: © Oxford University, Oxford University Museum of Natural History. Background: iStock
Dodo: © Oxford University, Oxford University Museum of Natural History. Background: iStock

Of all the recently extinct animals, none seems to excite the imagination quite like the dodo—a fact Mark Carnall has experienced firsthand. As one of two Life Collections Managers at the UK's Oxford University Museum of Natural History, he’s responsible for nearly 150,000 specimens, “basically all the dead animals excluding insects and fossils,” he tells Mental Floss via email. And that includes the only known soft tissue dodo head in existence.

“In the two and a bit years that I’ve been here, there’s been a steady flow of queries about the dodo from researchers, artists, the public, and the media,” he says. “This is the third interview about the dodo this week! It’s definitely one of the most popular specimens I look after.”

The dodo, or Raphus cucullatus, lived only on the island of Mauritius (and surrounding islets) in the Indian Ocean. First described by Vice Admiral Wybrand van Warwijck in 1598, it was extinct less than 100 years later (sailors' tales of the bird, coupled with its rapid extinction, made many doubt that the dodo was a real creature). Historians still debate the extent that humans ate them, but the flightless birds were easy prey for the predators, including rats and pigs, that sailors introduced to the isolated island of Mauritius. Because the dodo went extinct in the 1600s (the actual date is still widely debated), museum specimens are very, very rare. In fact, with the exception of subfossils—the dark skeletons on display at many museums—there are only three other known specimens, according to Carnall, “and one of those is missing.” (The fully feathered dodos you might have seen in museums? They're models, not actual zoological specimens.)

A man standing with a Dodo skeleton and a reconstructed model of the extinct bird
A subfossil (bone that has not been fully fossilized) Dodo skeleton and a reconstructed model of the extinct bird in a museum in Wales circa 1938.
Becker, Fox Photos/Getty Images

Since its extinction was confirmed in the 1800s, Raphus cucullatus has been an object of fascination: It’s been painted and drawn, written about and scientifically studied, and unfairly become synonymous with stupidity. Even now, more than 300 years since the last dodo walked the Earth, there’s still so much we don’t know about the bird—and Oxford’s specimen might be our greatest opportunity to unlock the mysteries surrounding how it behaved, how it lived, how it evolved, and how it died.

 
 

To put into context how old the dodo head is, consider this: From the rule of Oliver Cromwell to the reign of Queen Elizabeth II, it has been around—and it’s likely even older than that. Initially an entire bird (how exactly it was preserved is unclear), the specimen belonged to Elias Ashmole, who used his collections to found Oxford’s Ashmolean Museum in 1677. Before that, it belonged to John Tradescant the Elder and his son; a description of the collection from 1656 notes the specimen as “Dodar, from the Island Mauritius; it is not able to flie being so big.”

And that’s where the dodo’s provenance ends—beyond that, no one knows where the specimen came from. “Where the Tradescants got the dodo from has been the subject of some speculation,” Carnall says. Some live dodos did make it to Europe from Mauritius, and the museum thought its specimen might have been one of those birds—but new research, published after Mental Floss's initial interview with Carnall, casts doubt on that theory: After scanning the head, Carnall's colleagues at the museum and Warwick University discovered that the bird had been shot in the back of the head with pellets used to hunt birds in the 1600s. Though the pellets didn't penetrate the dodo's thick skull, "the researchers suggest it was a fatal shooting," Carnall tells Mental Floss in an email. "This new evidence perhaps indicates it wasn’t the remains of a live dodo brought back from Mauritius—unless it was a rather heavy-handed way of putting a dodo down."

The discovery raises questions not just about where the dodo was shot and who killed it but, as Oxford University Museum of Natural History director Paul Smith told The Guardian, about how made it to London with its skin and feathers intact. "If it was [shot] in Mauritius," he said, "there is a really serious question about how it was preserved and transported back, because they didn’t have many of the techniques that we use in the modern day to preserve soft tissues.” As Carnall says, "The mystery continues."

Initially, the specimen was just another one of many in the museum’s collections, and in 1755, most of the body was disposed of because of rot. But in the 19th century, when the extinction of the dodo was confirmed, there was suddenly renewed interest in what remained. Carnall writes on the museum’s blog that John Duncan, then the Keeper of the Ashmolean Museum, had a number of casts of the head made, which were sent to scientists and institutions like the British Museum and Royal College of Surgeons. Today, those casts—and casts of those casts—can be found around the world. (Carnall is actively trying to track them all down.)

The Oxford University Dodo head with scoleric bone and the skin on one side removed.
The Oxford University Dodo head with skin and sclerotic ring.
© Oxford University, Oxford University Museum of Natural History // Used with permission

In the 1840s, Sir Henry Acland, a doctor and teacher, dissected one side of the head to expose its skeleton, leaving the skin attached on the other side, for a book about the bird by Alexander Gordon Melville and H.E. Strickland called The dodo and its kindred; or, The history, affinities, and osteology of the dodo, solitaire, and other extinct birds of the islands Mauritius, Rodriguez and Bourbon. Published in 1848, “[It] brought together all the known accounts and depictions of the dodo,” Carnall says. The Dodo and its kindred further raised the dodo’s profile, and may have been what spurred schoolteacher George Clark to take a team to Mauritius, where they found the subfossil dodo remains that can be seen in many museums today.

Melville and Strickland described Oxford’s specimen—which they believed to be female—as being “in tolerable preservation ... The eyes still remain dried within the sockets, but the corneous extremity of the beak has perished, so that it scarcely exhibits that strongly hooked termination so conspicuous in all the original portraits. The deep transverse grooves are also visible, though less developed than in the paintings.”

Today, the specimen includes the head as well as the sclerotic ring (a bony feature found in the eyes of birds and lizards), a feather (which is mounted on a microscope slide), tissue samples, the foot skeleton, and scales from the foot. “Considering it’s been on display in collections and museums, pest eaten, dissected, sampled and handled by scientists for over 350 years,” Carnall says, “it’s in surprisingly good condition.”

 
 

There’s still much we don’t know about the dodo, and therefore a lot to learn. As the only soft tissue of a dodo known to exist, the head has been studied for centuries, and not always in ways that we would approve of today. “There was quite some consideration about dissecting the skin off of the head by Sir Henry Acland,” Carnall says. “Sadly there have also been some questionable permissions given, such as when [Melville] soaked the head in water to manipulate the skin and feel the bony structure. Excessive handling over the years has no doubt added to the wear of the specimen.”

Today, scientists who want to examine the head have to follow a standard protocol. “The first step is to get in touch with the museum with details about access requirements ... We deal with enquiries about our collections every single day,” Carnall says. “Depending on the study required, we try to mitigate damage and risk to specimens. For destructive sampling—where a tissue sample or bone sample is needed to be removed from the specimen and then destroyed for analysis—we weigh up the potential importance of the research and how it will be shared with the wider community.”

In other words: Do the potential scientific gains outweigh the risk to the specimen? “This,” Carnall says, “can be a tough decision to make.”

The head, which has been examined by evolutionary biologist Beth Shapiro and extinction expert Samuel Turvey as well as dodo experts Julian Hume and Jolyon Parish, has been key in many recent discoveries about the bird. “[It] has been used to understand what the dodo would have looked like, what it may have eaten, where it fits in with the bird evolutionary tree, island biogeography and of course, extinction,” Carnall says. In 2011, scientists took measurements from dodo remains—including the Oxford specimen—and revised the size of the bird from the iconic 50 pounder seen in paintings to an animal “similar to that of a large wild turkey.” DNA taken from specimen’s leg bone has shed light on how the dodo came to Mauritius and how it was related to other dodo-like birds on neighboring islands [PDF]. That DNA also revealed that the dodo’s closest living relative is the Nicobar pigeon [PDF].

A nicobar pigeon perched on a bowl of food.
A nicobar pigeon.
iStock

Even with those questions answered, there are a million more that scientists would like to answer about the dodo. “Were there other species—plants, parasites—that depended on the dodo?” Carnall asks. “What was the soft tissue like? ... How and when did the dodo and the related and also extinct Rodrigues solitaire colonize the Mascarene Islands? What were their brains like?”

 
 

Though it’s a rare specimen, and priceless by scientific standards, the dodo head is, in many ways, just like all the rest of the specimens in the museum’s collections. It’s stored in a standard archival quality box with acid-free tissue paper that’s changed regularly. (The box is getting upgraded to something that Carnall says is “slightly schmancier” because “it gets quite a bit of use, more so than the rest of the collection.”) “As for the specific storage, we store it in vault 249 and obviously turn the lasers off during the day,” Carnall jokes. “The passcode for the vault safe is 1234ABCD …”

According to Carnall, even though there are many scientific and cultural reasons why the dodo head is considered important, to him, it isn’t necessarily more important than any of the other 149,999 specimens he’s responsible for.

“Full disclosure: All museum specimens are equally important to collections managers,” he says. “It is a huge honor and a privilege to be responsible for this one particular specimen, but each and every specimen in the collection also has the power to contribute towards our knowledge of the natural world ... This week I was teaching about a species of Greek woodlouse and the molluscs of Oxfordshire. We know next to nothing about these animals—where they live, what they eat, the threats to them, and the predators that rely on them. The same is true of most living species, sadly. But on the upside, there’s so much work to be done!”

nextArticle.image_alt|e
Lucy Quintanilla
arrow
crime
How Scientists Are Using Plant-Based DNA Barcodes to Bust Counterfeiters
Lucy Quintanilla
Lucy Quintanilla

From high-end guitars to bolts that keep the wings attached to military aircraft, manufacturers are turning toward DNA to catch counterfeit products. A look inside the technology that’s sending crooks to jail in ways Sherlock Holmes only dreamed of.

 

Josh Davis dreamed of touring the United States with his rock band. He never dreamed the FBI would be in the audience.

Through the mid-2000s, the Josh Davis Band played Tucson, Arizona and Sioux Falls, South Dakota; Reno, Nevada and Little Rock, Arkansas; Dallas, Texas and Cheyenne, Wyoming; Bozeman, Montana and Tallahassee, Florida. The band earned extra cash selling guitars to pawn shops, hawking brands such as Gibson, Guild, and Martin. They sold each instrument for about $400 and used the cash to pay for gas, hotels, and food.

None of the guitars were authentic.

To fetch a high price, Davis and his bandmates bought cheap, unbranded guitars and painted fake trademarks on each instrument. (Later, they'd etch fake labels with a dremel hand tool, a CNC wood router, and a laser printer.) All they needed to close each deal was a gullible store clerk.

They found dozens. According to court documents, “Davis told [his drummer] that it was the responsibility of the pawn shops to determine if the guitar was fake or not." Over three years, the Josh Davis Band duped pawn shops across 22 states, selling 165 counterfeit guitars for more than $56,000.

The FBI noticed.

In 2014, Davis was tried in federal court in the eastern district of Pennsylvania, not far from the C.F. Martin & Co. guitar factory in the town of Nazareth. Eighty percent of the fake guitars had been falsely labeled as Martins. John M. Gallagher, an Assistant United States Attorney, argued on the company’s behalf: “[I]t was very difficult for us to quantify financially what money Martin Guitars or the other guitar companies are out because of this scam, but they certainly have damage to their reputation. And that’s not fair. I mean, it’s difficult for an American manufacturer to compete in a global economy as it is.”

Gallagher had a point. The Martin Guitar Company was already busy fighting a legal battle over counterfeit products in China. The Josh Davis Band just added insult to injury.

“As we encountered increased counterfeiting not just abroad, but in the United States, we wanted to find a solution,” says Gregory Paul, Martin’s Chief Technology Officer, in an interview. “We needed a technology that’s forensic grade, recognized in judicial systems around the world as definitive proof of authenticity.”

A solution would emerge in England at a Shell gas station.

 
 

The two bandits knew it all. They knew the Loomis van would be packed with cash. They knew the driver would park the van at Preston Old Road to refill an ATM. They knew the guards handling the money would be unarmed.

On a brisk December 2008 morning in Blackburn, England, the two men—dressed in black and their faces obscured by balaclavas—hid in waiting.

As expected, the Loomis van appeared and parked near the ATM. Two unarmed security guards—including Imran Aslam, a 32 year old who'd been working the job for just two months—stepped out. When Aslam revealed a cash box containing £20,000, the bandits pounced.

“Open the door or I’ll f***ing shoot you,” one of them demanded, gripping a Brocock revolver. He gestured to the locked door of the building that was to receive the money delivery. Aslam refused.

“There’s nothing I can do,” he said. “I can’t let you in.” Aslam gently placed the cash box on the sidewalk at the men’s feet. “That’s all I’ve got. That’s all I can give you."

A Loomis van on a street.
A Loomis van like the one that was robbed in the Blackburn heist.
Alamy

As one thief grabbed the box, the gunman pointed the handgun at Aslam and pulled the trigger three times. Two shots whizzed into the air. A third tore into Aslam’s right thigh.

With Aslam crumpled on the sidewalk, the crooks sprinted away and escaped on a hidden getaway motorcycle. Hours later, they jimmied open the cash box, snatched up the money, and lit the empty container on fire, leaving it to smolder in the woods.

It was not the first ATM attack in the area. Months earlier, 30 miles east in the village of Thornton, the same gang had snatched a loot of £50,000. Police were grasping at dead ends until a gas station attendant noticed that a customer had paid with bills covered in peculiar stains.

It was a dead giveaway. Every Loomis cash box contains a canister of explosive dye. If anybody improperly pries open the container, the dye bursts and the money gets drenched. Suspecting the money might be stolen, the station attendant notified the police. Swabs of the bills were soon mailed to a special forensic laboratory in Stony Brook, New York.

 
 

Stony Brook is a stone's throw east of the Gatsby-esque mansions of Long Island's Gold Coast. It's a college town strung with winding suburban lanes, harborside nature preserves, and a yacht club.

It’s also the heart of America’s “DNA corridor.”

Seventeen miles west sits Cold Spring Harbor Laboratory, where James Watson first publicly described the double helix structure of DNA. Fourteen miles east is Brookhaven National Laboratory, where scientists discovered the muon-induced neutron, Maglev technology, and point DNA mutations. Stony Brook itself is command central for a biotechnology company called Applied DNA Sciences. “This area probably has the highest density of DNA scientists in the world,” James Hayward, the company’s chairman, president, & CEO, tells Mental Floss.

Stony Brook, NY
Stony Brook, New York
John Feinberg, Flickr // CC BY 2.0

Applied DNA Sciences makes, tags, and tests DNA. The company has what Hayward calls “without a doubt, one of the world’s largest capacities to manufacture DNA.” One of their products, called SigNature DNA, can be used as a “molecular barcode” that can track products and even people. It can be found in Loomis cash boxes across the United Kingdom.

In fact, the exploding dye in each Loomis box holds a unique strain of DNA created specifically for that individual container. It is invisible and impossible to scrub clean. So when forensic scientists at Applied DNA tested the suspicious bills from the English gas station, they were able to pinpoint their exact origins—the cash box stolen from Blackburn.

By New Year's Day, five conspirators, including the ATM heist's gunman, Dean Farrell, and the group's ringleader, the ironically named Colin McCash, would be arrested. (Their victim, Aslam, would live to see them in court.) Since then, the same DNA technology has been used in more than 200 similar ATM heists. All of them have led to a conviction.

It was at the time of the Blackburn bust that the Martin Guitar Company decided to sign a contract with Applied DNA Sciences. “We were aware of the work Applied DNA was doing in the UK when we began talking to them,” Gregory Paul says. “Those cases certainly underscored the value of doing it.”

Today, just like the Loomis cash boxes, more than 750,000 Martin guitars are marked with a unique invisible DNA barcode created in Stony Brook. They're all part of an expanding effort to stop what is globally a $1.7 trillion problem—counterfeiting.

 
 

Step into the Martin guitar factory in Nazareth, Pennsylvania, and you’ll see why the company goes through such lengths to protect the identity of each of its instruments. The factory floor buzzes and clangs with the sounds of woodworkers wielding chisels, lathes, sanders, and saws. Many musicians consider Martin the gold standard of acoustic guitars because of this handiwork.

The manufacturing process is involved and time-consuming. First, the wood is air dried, roasted in a kiln, and rested in a giant acclimating room for a year. (Some cuts are so rare that they must be locked in a cage.) The wood is cut with band saws and shaped by hand with bending irons. The braces inside the instrument—which prevent the guitar from collapsing on itself—are scalloped with paring knives, files, and scrapers. When workers glue the guitar, they clamp it with clothespins.

Martin clothespins
Paul Goodman, Flickr // CC BY-NC-ND 2.0

The glossing process, which gives the instrument its sheen, is as dazzling as it is exhausting. Workers apply a stain, a vinyl seal coat, a filler coat, and a second vinyl seal coat. That’s followed by a light scuffing, three coats of lacquer, some sanding, three more coats of lacquer, more sanding, a final touch-up with a brush, a glaze of lacquer, a final sanding, a polish with a buffing robot, and then one last hand polish with a buffing bonnet made of lamb’s wool.

About 560 people work here. They take pride in their work—it can take months to manufacture a guitar. But for counterfeiters, it can take just a few hours.

Musical instruments may not be the first thing that pops to mind when people imagine counterfeiting—the word conjures grifters on Canal Street hawking fake Rolexes out of trench coats—but bootlegged musical instruments are a big problem. Martin knows this firsthand. In China, where copyright is awarded on a first-come, first-served basis, a guitar-maker with no affiliation with the company once registered Martin's logo, technically earning the legal right to manufacture their own “Martin” guitars. “A Chinese national has hijacked our brand and is making, unfortunately, poorly made copies of Martin guitars with my family's name on them,” Chris Martin IV, the company’s CEO, announced.

It's not just Martin. In 2010, a raid on a Chinese factory turned up 100,000 packages of fake D’Addario guitar strings. (D’Addario estimates that nearly 70 percent of the string sets sold under its name in China are fake. In 2010, the company coughed up $750,000 to fund anti-counterfeiting activities.) Four years later, U.S. Customs and Border Protection discovered a shipment of 185 guitars coming from China that suspiciously bore “Made in USA” labels. The stash of fake Gibson, Les Paul, Paul Reed Smith, and Martin guitars could have screwed consumers out of more than $1 million.

The problem of counterfeit instruments isn't just about protecting the bank accounts of companies and their consumers. "There's an element of consumer safety, too," Gregory Paul explains. "As much as guitars get counterfeited, guitar strings are counterfeited ten times as much. And those products need to possess a certain tensile strength when tuning." A cheaply-made guitar string can be dangerous; it risks snapping and injuring the performer.

Inside the Martin Guitar Factory
Paul Goodman, Flickr // CC BY-NC-ND 2.0

None of this is new. The old fake label switcheroo has been the fraudster's go-to for centuries. The composer Tomaso Antonio Vitali was complaining about it back in 1685 after he bought a phony violin:

"[T]his violin bore the label of Nicolò Amati, a maker of great repute in his profession. Your petitioner has, however, discovered that the said violin was falsely labelled, he having found underneath the label one of Francesco Ruggieri, called 'Il Pero,' a maker of much less repute, whose violins at the utmost do not realize more than three pistoles. Your petitioner has consequently been deceived by the false label."

What's new is the technology available to counterfeiters today: While faking the label of an instrument has always been relatively easy, it's been historically difficult to counterfeit the tone unique to a particular brand or model. That's changing, and it has manufacturers concerned.

All it takes to make a convincing fake is fungi. In 2009, Dr. Francis Schwarze, of the Swiss Federal Laboratories for Materials Science and Technology, hired a luthier to make a violin from wood infected with Physisporinus vitreus and Xylaria longipes, fungi known to uniquely degrade woody cell walls. When the fungal violin was tested against two 1711 Stradivarius violins, a jury of experts was asked to identify which was which; 63 percent believed the fungus-treated instrument had been made by Stradivarius.

A less earthy technique called torrefaction—a process that involves heating wood, cooling it, heating it again, and cooling it again—delivers similar results and is popular with mainstream musical instrument manufacturers. The cycle causes volatile oils, sugars, and resins to evacuate the wood, giving a brand-new instrument a rich tone reminiscent of a decades-old guitar.

Manufacturers such as Yamaha, Collings, Taylor, and Martin have all experimented with torrefaction. And while such technologies have improved the sound of new guitars, they've also fallen into the hands of counterfeiters—making it more difficult for unwitting consumers to pinpoint fraudulent products.

A microscopic barcode made of DNA could change that.

 
 

Think of DNA not as the building blocks of life, but as Mother Nature's attempt at writing code. Instead of using the dots and dashes of Morse code or the ones and zeroes of binary, DNA uses nucleotides: adenine (A), thymine (T), guanine (G), and cytosine (C).

The arrangement of those nucleotides is what differentiates your boss from a bonobo. In the 1970s, shortly after scientists learned how to synthesize arbitrary stretches of As, Ts, Cs, and Gs, experts realized that they could also encode messages with DNA in the same way that computer programmers did with ones and zeroes. (In the late 1970s, some scientists went so far to hypothesize that the DNA of viruses might contain messages from extraterrestrials; attempts to decode viral DNA found no alien fanmail.)

In 1988, Joe Davis, an artist-in-residence of sorts at MIT, became the first person to encode a message in DNA. Davis synthesized a strand of DNA—CCCCCCAACGCGCGCGCT—that, when decrypted by a computer program, visually resembled the ancient Germanic Runic figure for the female earth. The work, called Microvenus, was inserted into E. coli and reduplicated millions of times.

(We should note that this was a run-of-the-mill experiment for Davis, who is essentially a magnetic mad scientist with a penchant for performance art. He once built an aircraft powered by frog legs and concocted ways to make silkworms spin gold; a memorial he designed for the victims of Hurricane Katrina bottles up lightning and angrily redirects it back at the clouds.)

Writing about Microvenus in Arts Journal, Davis explained that, “unless it is purposefully destroyed, it could potentially survive for a period that is considerably longer than the projected lifespan of humanity itself.”

Twenty-four years later, George Church, a geneticist at Harvard University and a friend of Davis’s, converted his book Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves—about 53,426 words, 11 jpg images, and a line of JavaScript—into DNA. Like Davis, he reduplicated the DNA until he had produced 70 billion copies (making him, in a twisted way, the most published author on earth). A DNA sequencer later reassembled his book, word for word, with hardly a typo.

These biological party tricks may foreshadow the future of data storage, a world where all of our data is stored as As, Ts, Cs, and Gs. “Think of your word document stored on your laptop," explains James Hayward, Applied DNA’s president. "It’s just a lineal series of code, each bit with only two options: a zero or a one. But in DNA, each bit has four options.” Those four options mean that DNA can hold significantly larger amounts of information in a significantly smaller space. If you encoded all the information the planet produces each year into DNA, you could hold it in the palm of your hand.

In fact, Joe Davis has tinkered with that exact concept. He plans to encode all of Wikipedia into DNA, insert it into the genome of a 4000-year-old strain of apple, and plant his own Garden of Eden, growing "Trees of Knowledge" that will literally contain the world’s wisdom. (Well, Wikipedia's version of it.)

 
 

The same principles that enable Davis and Church to insert Runic art and books into DNA allow researchers at Applied DNA Sciences to create barcodes for Martin Guitar. It's a relatively simple concept: Whereas normal barcodes identify a product with a unique pattern of numbers, these barcodes use a unique sequence of nucleotides.

To do that, scientists first isolate a strand of plant DNA. They splice it, kick out any functional genetic information, shuffle the As, Cs, Ts, and Gs into a one-of-a-kind pattern, and stitch it back together. Then they make millions of copies of that strand, which are applied to the body and strings of Martin guitars.

The finished DNA barcode is genetically inert. It usually ranges from 100 to nearly 200 base pairs, long enough to create an unfathomably complicated sequence but short enough that, were it injected into a living human cell, nothing would happen: Ingesting a DNA barcode is no more dangerous than eating an Oreo. (It may even be healthier.)

"It is important to recognize that DNA is an ordinary component of food. You probably ate nearly a gram of it yesterday, which came from the DNA inside all plant and meat cells," explains MeiLin Wan, VP, Textile Sales at Applied DNA Sciences. "But because DNA is degraded down to its building blocks (A,T,C,G) before it has any chance of being taken up into the body (as ordinary nutrition) people do not become modified with plant or animal genes when we eat them … Thus, when used as a molecular bar code, DNA is as safe as food in that regard."

And while the DNA synthesized here is physically small, the sequence encoded within is substantially longer than any other barcode on the planet. “If it were a barcode, it’d be as long as your arm,” Dr. Michael Hogan, VP of Life Sciences at Applied DNA, said in a video.

And it's used for more than just musical instruments and cash boxes. These DNA barcodes are stamped onto pills, money, even vehicles. At least 10,000 high-end German cars possess a unique DNA stamp. Sweden’s largest electricity provider coats its copper supply in DNA barcodes, a move that has helped reduce theft of copper-coated wire by 85 percent. Pharmaceutical companies print DNA barcodes onto capsules and tablets to weed out dangerous fake drugs that may have slipped into the supply chain.

The Pentagon uses it too. When Vice Admiral Edward M. Straw was asked what kept him awake at night, he said nothing of IEDs or enemy combatants; he answered, “Aircraft fasteners. Nuts and bolts that hold components onto airplanes, such as wings. Wing bolts.” That's because the U.S. military’s spare parts system is rumored to contain approximately 1 million counterfeit parts—inferior nuts, bolts, and fasteners that could become a liability on the battlefield. Today, the Air Force uses DNA barcodes to ensure that junky hardware, which could wiggle or snap during flight, never sees an aircraft.

As for Martin, when I asked Gregory Paul where and how the DNA was applied onto the company's guitars, he just chuckled. "Yes. It is applied! That's all I can get into."

To see how it worked, I would have to drive to Stony Brook.

 
 

Wandering the halls of the Long Island High Technology Incubator is like peeking into the future’s window. Inside a squat set of buildings on the eastern campus of Stony Brook University, there’s a company called ImmunoMatrix, which aims to make vaccination needles obsolete; there's Vascular Simulations, which manufactures human dummies that have functioning cardiovascular systems; and there’s Applied DNA Sciences.

I wasn’t granted access to the laboratory where DNA is synthesized—the location is apparently secret, and visitors aren’t permitted because of the contamination risk—but I was permitted inside one of Applied DNA Sciences' forensic laboratories.

Only a small number of people have the clearances to enter the forensic lab here, and, of those, even fewer have access to the keys to the evidence locker. The room is locked: white walls, workstations, and a few scientists in lab coats handling equipment with names I dared not try to pronounce.

Textile Lab
The textile lab at Applied DNA Science.
Courtesy Applied DNA Science

I had imagined a room of objects waiting to be tested, guitars and airplane bolts and wads of cash. But to my surprise, all I see are small swatches of fabric. I'm told that whenever a company like Martin is testing the authenticity of a product, they simply need to swab the instrument. “There’s no way to cheat,” says Wan. “Because if there’s one molecule of our DNA, we will find it.”

Wan gets visibly excited when she talks about stopping fraud. She explains that approximately 15 percent of the goods traded around the globe are phony. Counterfeiting costs American businesses more than $200 billion a year, and the problem touches every industry. Zippo, for example, makes 12 million lighters every year, but counterfeiters match their output. Even your kitchen cabinets are unsafe: It's estimated that 50 percent of extra virgin olive oils in America are, in fact, impure. (Blame the Mafia.)

“People say this isn’t life or death, nobody is going to die from counterfeit products,” Wan says. “But this accumulated cheating casts a culture of doubt, it makes consumers and companies wonder: Am I getting ripped off? Because if you’re going to spend $500 on a Martin guitar instead of $50 on a generic instrument, then every component of that guitar should be made by Martin. Period.”

Here forensic scientists can find out who is telling the truth.

In the lab, the methods are similar to what you’d see on CSI, minus the dramatic music. Many of the scientists here previously worked in medical examiner's offices. “Everything we do is consistent with what you’d do in a human identification laboratory,” explains Dr. Ila Lansky, Director of Forensics.

To properly identify the DNA, samples from the swab in question must be multiplied, so they're ferried to an instrument called a thermal cycler. (It's basically a molecular photocopier: The DNA is heated. Then a heat-resistant enzyme called Polymerase—first discovered in the thermal springs of Yellowstone National Park—is added. When the DNA is heated once more, the Polymerase helps double the number of DNA strands.) Repeated over and over, the machine can create millions of testable samples very quickly.

The birthplace of polymerase
The birthplace of polymerase: the hot springs of Yellowstone.
Mark Ralston, AFP/Getty Images

This freshly-copied batch of DNA is placed in a refrigerator-sized machine called a 3500 Genetic Analyzer, a fluorescence-based instrument that determines the length of the DNA and the sequence of its As, Cs, Ts, and Gs. Within 20 to 120 minutes, the results appear on a computer screen in the form of a cragged graph, with wobbly peaks and valleys.

“The DNA really can’t be found unless you know what you’re looking for,” Lansky explains. “And we’re the only ones who know what to look for.”

On the day I visited, the team wasn't analyzing guitars. Instead, they were looking at cotton samples that claimed to be 100 percent pure extra-long staple, or ELS. I'm told the cotton supply chain is messy: A puffball may grow in California, be ginned in Arkansas, be woven in India, be dyed in Egypt, and then return to multiple warehouses in the United States for distribution. Each step is an opportunity for the “100 percent cotton” to become corrupted. (With sometimes horrifying results: In 2014, Italian police seized more than a million products from a company claiming to make “100 percent cashmere.” The products contained rat fur.)

Wan stands before the computer and points to the graph. To me, it’s just squiggles. She might as well have been showing me the latest stock market results. But to her eyes, it’s a damning fingerprint: She compares the contours to the peaks and valleys expected of 100 percent pure cotton. The lines don’t match.

Turns out, it's less than 80 percent ELS cotton—evidence that somebody adulterated the sample somewhere along the supply chain.

Wan smirks and says, “And that's the reason we like to say: DNA is truth."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios