CLOSE
NASA, ESA, and Hubble Heritage (STScI/AURA), W. Blair (STScI/ JHU) and R. O'Connell (UVA) / TASCHEN
NASA, ESA, and Hubble Heritage (STScI/AURA), W. Blair (STScI/ JHU) and R. O'Connell (UVA) / TASCHEN

15 Magnificent Images from the Hubble Telescope

NASA, ESA, and Hubble Heritage (STScI/AURA), W. Blair (STScI/ JHU) and R. O'Connell (UVA) / TASCHEN
NASA, ESA, and Hubble Heritage (STScI/AURA), W. Blair (STScI/ JHU) and R. O'Connell (UVA) / TASCHEN

On April 24, 1990, the Hubble Telescope hitched a ride aboard the space shuttle Discovery and began its ascent into low-earth orbit, where it has remained ever since, exploring the great unknown and projecting images that have helped scientists and the public at large make better sense of our place in the universe.

On the occasion of the 25th anniversary of the telescope’s launch, TASCHEN has released a new book, Expanding Universe. Photographs from the Hubble Space Telescope, offering a collection of amazing images from the 'scope, which has explored everything from black holes to exoplanets. Here are 15 of its most magnificent pictures.

1. A SPACE SHUTTLE WITH A VIEW.

NASA, ESA, and Hubble Heritage (STScI/AURA)

HST The Hubble Space Telescope. Classification: Cassegrain Telescope; Position: Earth’s Orbit; Distance from earth: 350 mi; Instrument/year: Photo by Space Shuttle Crew, 1999.

2. TOTALLY NEBULA.

NASA, ESA, and Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and H. Bond (STScI/PSU)

RS Puppis. Classification: Variable Star, Nebula; Position: 08h 13m, –34° 34' (Puppis); Distance from earth: 6,500 ly; Instrument/year: ACS/WFC, 2010.

3. GALAXY QUEST.

NASA, ESA, and Hubble Heritage (STScI/AURA), J. Gallagher (U. Wisconsin), M. Mountain (STScI), and P. Puxley (NSF)

M82 Cigar Galaxy. Classification: Galaxy; Position: 09h 55m, +69° 40' (Ursa Major); Distance from earth: 12,000,000 ly; Instrument/year: ACS/WFC, 2006.

4. PLANET, ALIGNED.

NASA, ESA, and E. Karkoschka (U. Arizona)

Jupiter & Ganymede. Classification: Planet & Moon; Position: Variable; Distance from earth: 443,000,000 mi; Instrument/year: WFPC2, 2007.

5. DARK NEBULA RISING.

NASA, ESA, and Hubble Heritage (STSci/AURA)

Barnard 33 Horsehead Nebula. Classification: Dark Nebula; Position: 05h 40m, –02° 27' (Orion); Distance from earth: 1,600 ly; Instrument/year: WFC3/IR, 2012.

6. CONES IN SPACE.

NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. CLampin and G. Hartiq (STScI), the ACS Science Team

NGC 2264 Cone Nebula. Classification: Star-forming Nebula; Position: 06h 41m, +09° 25' (Monoceros); Distance from earth: 2,500 ly; Instrument/year: ACS/WFC, 2002.

7. STAR FORMATION.

NASA, ESA, and Hubble Heritage (STScI/AURA)

M16 Eagle Nebula. Classification: Star-forming Nebula; Position: 18h 18m, –13° 49' (Serpens); Distance from earth: 6,500 ly; Instrument/year: ACS/WFC, 2004.

8. BUGGING OUT.

NASA, ESA, and Hubble SM4 ERO Team

NGC 6302 Bug Nebula. Classification: Planetary Nebula; Position: 17h 13m, –37° 06' (Scorpius); Distance from earth: 3,800 ly; Instrument/year: WFC3/UVIS, 2009.

9. A SUPER SUPERNOVA.

NASA, ESA, and J. Hester (ASU)

M1 Crab Nebula; Classification: Supernova Remnant; Position: 05h 34m, +22° 00' (Taurus); Distance from earth: 6,500 ly; Instrument/year: WFPC2, 1999, 2000.

10. EAGLE IN THE SKY.

NASA, ESA, and Hubble Heritage (STScI/AURA)

M16 Eagle Nebula. Classification: Star-forming Nebula; Position: 18h 18m, –13° 49' (Serpens); Distance from earth: 6,500 ly; Instrument/year: WFC3/IR, 2014.

11. EAGLE REVISITED.

NASA, ESA, and Hubble Heritage (STScI/AURA)

M16 Eagle Nebula. Classification: Star-forming Nebula; Position: 18h 18m, –13° 49' (Serpens); Distance from earth: 6,500 ly; Instrument/year: WFC3/UVIS, 2014.

12. SPIRALING OUT.

NASA, ESA, and Hubble Heritage (STScI/AURA), W. Blair (STScI/ JHU) and R. O'Connell (UVA)

M83 Southern Pinwheel Galaxy. Classification: Barred Spiral Galaxy; Position: 13h 37m, –29° 51' (Hydra); Distance from earth: 15,000,000 ly; Instrument/year: WFC3/UVIS, 2009–2012.

13. SPIRALING OUT EVEN FURTHER.

NASA, ESA, and The Hubble Heritage (STSci/AURA), B. Holwerda (STScI) and J. Dalcanton (U. of Washington)

2MASX J00482185-2507365. Classification: Spiral Galaxy; Position: 00h 48m, –25° 08' (Sculptor); Distance from earth: 780,000,000 ly; Instrument/year: ACS/WFC, 2006.

14. QUICK FIX.

NASA, ESA

Hubble Repairmen, STS-103, December 27, 1999. From their perch 350 miles above Earth’s surface, astronauts Steven Smith and John Grunsfeld replace the gyroscopes in rate sensor units inside Hubble.

15. MAJOR URSA MAJOR.

NASA, ESA, and Hubble Heritage (STScI/AURA) Acknowledgment: M.H. Wong (STScI/UC Berkeley) and C. Go (Philippines)

M81, NGC 3031. Classification: Spiral Galaxy; Position: 09h 55m, +69° 03' (Ursa Major); Distance from earth: 11,600,000 ly; Instrument/year: ACS/WFC, 2004-2006.

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
NASA
arrow
science
The Ozone Layer Is Healing, Thanks to an International Ban on Harmful Man-Made Chemicals
NASA
NASA

The ozone layer is on the mend, thanks to a decrease in human-produced chemicals called chlorofluorocarbons, or CFCs, in the atmosphere. Using data from NASA's Aura satellite, scientists were able to measure the chemical composition of the thinned gas layer above the Antarctic and found about 20 percent less ozone depletion than there was in 2005. They published their findings on January 4 in the journal Geophysical Research Letters.

In 1985, UK scientists published a landmark study in the journal Nature announcing their discovery of an annually recurring hole in the ozone layer above Antarctica. (Each September, as the Southern Hemisphere's winter arrives, the Sun's UV rays trigger a reaction between the ozone and chemical elements from CFCs, chlorine and bromine, which destroys the ozone molecules.) The finding led to the Montreal Protocol in 1987, an international treaty that gradually banned the production and use of CFCs in refrigerants, aerosol sprays, solvents, and air conditioners.

In July 2016, Antarctic researchers published a study in the journal Science reporting that the ozone layer appeared to be healing (although it wasn't projected to completely patch up for decades). They tracked this progress by monitoring the Antarctic ozone hole's area, height, and chemical profile. Still, they didn't know whether this progress could be attributed to the Montreal Protocol's mandate.

NASA itself has used Aura to monitor the hole since the mid-2000s. After analyzing data produced by the Microwave Limb Sounder, a satellite instrument aboard Aura that measures trace gases, the space agency has confirmed that the CFC ban has led to the big decrease in ozone depletion during the Antarctic winter.

By winter, ozone-busting chlorine compounds have converted into hydrochloric acid, a process that occurs after it's destroyed ozone particles and reacts with methane. "By around mid-October, all the chlorine compounds are conveniently converted into one gas, so by measuring hydrochloric acid, we have a good measurement of the total chlorine," researcher Susan Strahan said in a NASA statement. Scientists compared these hydrochloric acid levels with nitrous oxide, which is similar in nature to CFCs but isn't diminishing in the atmosphere.

Their study is billed as "the first to use measurements of the chemical composition inside the ozone hole to confirm that not only is ozone depletion decreasing, but that the decrease is caused by the decline in CFCs," according to NASA. But while these initial results are promising, scientists say that the ozone layer's full recovery is still a long way off.

"As far as the ozone hole being gone, we're looking at 2060 or 2080,” study co-author Anne Douglass said. “And even then there might still be a small hole."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios