CLOSE
iStock
iStock

Why Do People in Interviews Say “That’s a Good Question”?

iStock
iStock

Have you been listening to radio interviews lately, watching experts being questioned on TV, or going to talks at conferences?

That’s a good question.

Wait. What? No it’s not. It’s not even really a question, just a rhetorical opening to bring up the topic of why it seems that almost every kind of question, good or bad, is met with a “that’s a good question” response these days.

I recently talked to Stephen J. Dubner at the Freakonomics Radio Podcast about the phrase, what it accomplishes, and why people use it so much. We talked about whether Americans or Brits use it more, what makes it an effective “bridge” technique for changing the subject, and how it helps create a misleading map of the conversation. You’ll also hear from media and P.R. trainer Bill McGowan on the bridging technique, Steven Levitt on what makes saying the phrase a nice thing to do for someone, and Charlie Rose, master of the truly good question, on what it feels like when someone says “that’s a good question” to him.

Listen here.

You can find more Freakonomics Radio Podcasts here.

nextArticle.image_alt|e
iStock
arrow
Big Questions
How Are Speed Limits Set?
iStock
iStock

When driving down a road where speed limits are oppressively low, or high enough to let drivers get away with reckless behavior, it's easy to blame the government for getting it wrong. But you and your fellow drivers play a bigger a role in determining speed limits than you might think.

Before cities can come up with speed limit figures, they first need to look at how fast motorists drive down certain roads when there are no limitations. According to The Sacramento Bee, officials conduct speed surveys on two types of roads: arterial roads (typically four-lane highways) and collector streets (two-lane roads connecting residential areas to arterials). Once the data has been collected, they toss out the fastest 15 percent of drivers. The thinking is that this group is probably going faster than what's safe and isn't representative of the average driver. The sweet spot, according to the state, is the 85th percentile: Drivers in this group are thought to occupy the Goldilocks zone of safety and efficiency.

Officials use whatever speed falls in the 85th percentile to set limits for that street, but they do have some wiggle room. If the average speed is 33 mph, for example, they’d normally round up to 35 or down to 30 to reach the nearest 5-mph increment. Whether they decide to make the number higher or lower depends on other information they know about that area. If there’s a risky turn, they might decide to round down and keep drivers on the slow side.

A road’s crash rate also comes into play: If the number of collisions per million miles traveled for that stretch of road is higher than average, officials might lower the speed limit regardless of the 85th percentile rule. Roads that have a history of accidents might also warrant a special signal or sign to reinforce the new speed limit.

For other types of roads, setting speed limits is more of a cut-and-dry process. Streets that run through school zones, business districts, and residential areas are all assigned standard speed limits that are much lower than what drivers might hit if given free rein.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

nextArticle.image_alt|e
iStock
arrow
Big Questions
Do Bacteria Have Bacteria?
iStock
iStock

Drew Smith:

Do bacteria have bacteria? Yes.

We know that bacteria range in size from 0.2 micrometers to nearly one millimeter. That’s more than a thousand-fold difference, easily enough to accommodate a small bacterium inside a larger one.

Nothing forbids bacteria from invading other bacteria, and in biology, that which is not forbidden is inevitable.

We have at least one example: Like many mealybugs, Planococcus citri has a bacterial endosymbiont, in this case the β-proteobacterium Tremblaya princeps. And this endosymbiont in turn has the γ-proteobacterium Moranella endobia living inside it. See for yourself:

Fluorescent In-Situ Hybridization confirming that intrabacterial symbionts reside inside Tremblaya cells in (A) M. hirsutus and (B) P. marginatus mealybugs. Tremblaya cells are in green, and γ-proteobacterial symbionts are in red. (Scale bar: 10 μm.)
Fluorescent In-Situ Hybridization confirming that intrabacterial symbionts reside inside Tremblaya cells in (A) M. hirsutus and (B) P. marginatus mealybugs. Tremblaya cells are in green, and γ-proteobacterial symbionts are in red. (Scale bar: 10 μm.)

I don’t know of examples of free-living bacteria hosting other bacteria within them, but that reflects either my ignorance or the likelihood that we haven’t looked hard enough for them. I’m sure they are out there.

Most (not all) scientists studying the origin of eukaryotic cells believe that they are descended from Archaea.

All scientists accept that the mitochondria which live inside eukaryotic cells are descendants of invasive alpha-proteobacteria. What’s not clear is whether archeal cells became eukaryotic in nature—that is, acquired internal membranes and transport systems—before or after acquiring mitochondria. The two scenarios can be sketched out like this:


The two hypotheses on the origin of eukaryotes:

(A) Archaezoan hypothesis.

(B) Symbiotic hypothesis.

The shapes within the eukaryotic cell denote the nucleus, the endomembrane system, and the cytoskeleton. The irregular gray shape denotes a putative wall-less archaeon that could have been the host of the alpha-proteobacterial endosymbiont, whereas the oblong red shape denotes a typical archaeon with a cell wall. A: archaea; B: bacteria; E: eukaryote; LUCA: last universal common ancestor of cellular life forms; LECA: last eukaryotic common ancestor; E-arch: putative archaezoan (primitive amitochondrial eukaryote); E-mit: primitive mitochondrial eukaryote; alpha:alpha-proteobacterium, ancestor of the mitochondrion.

The Archaezoan hypothesis has been given a bit of a boost by the discovery of Lokiarcheota. This complex Archaean has genes for phagocytosis, intracellular membrane formation and intracellular transport and signaling—hallmark activities of eukaryotic cells. The Lokiarcheotan genes are clearly related to eukaryotic genes, indicating a common origin.

Bacteria-within-bacteria is not only not a crazy idea, it probably accounts for the origin of Eucarya, and thus our own species.

We don’t know how common this arrangement is—we mostly study bacteria these days by sequencing their DNA. This is great for detecting uncultivatable species (which are 99 percent of them), but doesn’t tell us whether they are free-living or are some kind of symbiont. For that, someone would have to spend a lot of time prepping environmental samples for close examination by microscopic methods, a tedious project indeed. But one well worth doing, as it may shed more light on the history of life—which is often a history of conflict turned to cooperation. That’s a story which never gets old or stale.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios