CLOSE
Original image
iStock

10 Pointed Facts About Styracosaurus

Original image
iStock

1. Individuals Had Slightly Different Frill Spikes.

Also known as “parietal horns,” the relative size of these pointy structures varied noticeably between Styracosaurus specimens.

2. Styracosaurus Probably Used a Different Fighting Style Than Triceratops Did.

In a 2009 effort to shed some light on dinosaurian combat, a paleontological team compared several skulls from Centrosaurus (pictured on the left) and the famed Triceratops. Scars consistent with locked-horn showdowns are, it turns out, quite common on Triceratops heads, but relatively rare in Centrosaurus remains. Perhaps this is because the latter herbivore—like its close cousin Styracosaurus—lacked formidable horns above its eyes and probably had to find other means of clashing with rivals.

“Possibly Centrosaurus wasn’t using its horns for fighting,” says Dr. Andrew Farke (who helped execute this study), “or, if it was fighting, it was concentrating its energies on parts away from the skull, like maybe flank-butting or something like that.”

3. Styracosaurus Appears in the Weirdest Western Ever Made.

Cowboys wrangle stop-motion dinosaurs in Ray Harryhausen’s epic creature feature The Valley of Gwangi (1969).  At one point, predatory “Gwangi” (whose design was loosely based on T. rex and Allosaurus) takes down an enraged Styracosaurus with some help from a spear-toting horseman.

4. …But Was Cut from King Kong (1933).

Though animator Willis O’Brien had shot a thrilling action sequence with his poseable Styracosaurus model, this scene wound up getting scrapped. Fortunately, when the hasty sequel Son of Kong (1933) was churned out less than a year later, “Obie’s” Styracosaurus finally secured some screen time.

5. Scientists Have Been Divvying Up Styracosaurus.

What’s in a (scientific) name? Clarity, for starters. Once upon a time, Styracosaurus included three recognized species:  S. albertensis, S. parksi, and S. ovatus. In 2007, though this dino got a classification makeover, with S. albertensis and S. parksi being merged into a single species thanks to their virtually indistinguishable anatomy. Meanwhile, S. ovatus was placed within an entirely new genus and is now called Rubeosaurus ovatus.

6. Styracosaurus’ Nose Horn was Shorter than Most People Think.

When studying fossils for a living, incomplete specimens can be the bane of your existence, and Styracosaurus’ distinctive nose horn falls into this category: Most of what we know about this nasal apparatus is based on fragmentary fossils. Though it’s traditionally been assumed to have been around 20 inches long, a closer examination reveals that the horn was around half that length (and possibly blunt-tipped).

7. Some Have Said That Styracosaurus Had Absurdly-Huge Jaw Muscles.

The flashy frills of ceratopsians (horned dinos like Styracosaurus and Triceratops) have inspired much debate over the years. Paleontologists Richard Swann Lull and John McLoughlin independently proposed a radical explanation about their function: Perhaps these huge, bony structures were nothing but attachment anchors for the creatures’ (presumably gigantic) jaw muscles. This idea holds that the frill was buried in flesh and bound to the dinosaurs’ necks and shoulders.

Today, most experts currently believe these frills were predominantly display-oriented features. However, there’s no doubt that ceratopsians packed some powerful bites; for more info, check out this entertaining write-up.

8. Styracosaurus Belonged to a Super-Ornamented Subfamily.

The centrosaurinae is a group of ceratopsians whose members lacked large horns above their eyes, had pronounced nose horns instead, and rocked short, well-decorated frills.

9. Crushed Skulls Distorted Many Early Styracosaurus Illustrations.

Fossilization can be a cruel mistress. One of the world’s most complete Styracosaurus skulls contains a crucial flaw: Its frill has been artificially bent by the elements. This specimen was unearthed in the 1910s and helped scientists understand what the strange animal looked like. Several academic paintings and sketches would be based upon this magnificent fossil. But, unfortunately, geological forces had, over time, unnaturally crushed the dinosaur’s frill, forcing it downward and making the apparatus appear as though it jetted out directly behind Styracosaurus’ skull. Thanks to a second skull that turned up later, we now know that this frill was held at a more upwards angle.

10. It’s Named After Ancient Greek Spear Shafts.

The steel spike at the end of a spear was known as a styrax in classical Greece, this term wound up inspiring the first part of Styracosaurus’ genus name.  

Original image
iStock
arrow
science
The T. Rex Fossil That Caused a Scientific Controversy
Original image
iStock

In the early 2000s, a team of paleontologists inadvertently set the stage for a years-long scientific saga after they excavated a well-preserved partial Tyrannosaurus rex skeleton from Montana's Hell Creek formation. While transporting the bones, the scientists were forced to break a femur. Pieces from inside the thigh bone fell out, and these fragments were sent to Mary Schweitzer, a paleontologist at North Carolina State University, for dissection and analysis.

Under a microscope, Schweitzer thought she could make out what appeared to be cells and tiny blood vessels inside the pieces, similar to those commonly discovered inside fresh bone. Further analysis revealed what appeared to be animal proteins, which sent Schweitzer reeling. Could she have just discovered soft tissue inside dinosaur leg bone many millions of years old, found in ancient sediments laid down during the Cretaceous period? Or was the soft stuff simply a substance known as biofilm, which would have been formed by microbes after the bone had already fossilized?

Following a seemingly endless series of debates, studies, and papers, Schweitzer's hunch was proven correct. That said, this contentious conclusion wasn't made overnight. To hear the whole saga—and learn what it means for science—watch the recent episode of Stated Clearly below, which was first spotted by website Earth Archives.

[h/t Earth Archives]

Original image
Courtesy the University of Colorado Boulder
arrow
science
Fossilized Poop Shows Some Herbivorous Dinosaurs Loved a Good Crab Dinner
Original image
Lead author Karen Chin of the University of Colorado Boulder
Courtesy the University of Colorado Boulder

Scientists can learn a lot about the prehistoric world through very, very old poop. Just recently, researchers from the University of Colorado-Boulder and Kent State University studying fossilized dinosaur poop discovered that some herbivores weren't as picky about their diets as we thought. Though they mostly ate plants, large dinosaurs living in Utah 75 million years ago also seem to have eaten prehistoric crustaceans, as Nature News reports.

The new study, published in Scientific Reports, finds that large dinosaurs of the Late Cretaceous period seem to have eaten crabs, along with rotting wood, based on the content of their coprolites (the more scientific term for prehistoric No. 2). The fossilized remains of dinos' bathroom activities were found in the Kaiparowits rock formation in Utah's Grand Staircase-Escalante National Monument, a known hotspot for pristine Late Cretaceous fossils.

"The large size and woody contents" of the poop suggest that they were created by dinosaurs that were well-equipped to process fiber in their diets, as the study puts it, leading the researchers to suggest that the poop came from big herbivores like hadrosaurs, whose remains have been found in the area before.

Close up scientific images of evidence of crustaceans in fossilized poop.
Chin et al., Scientific Reports (2017)

While scientists previously thought that plant-eating dinosaurs like hadrosaurs only ate vegetation, these findings suggest otherwise. "The diet represented by the Kaiparowits coprolites would have provided a woody stew of plant, fungal, and invertebrate tissues," the researchers write, including crabs (Yum). These crustaceans would have provided a big source of calcium for the dinosaurs, and the other invertebrates that no doubt lived in the rotting logs would have provided a good source of protein.

But they probably didn't eat the rotting wood all year, instead munching on dead trees seasonally or during times when other food sources weren’t available. Another hypothesis is that these "ancient fecal producers," as the researchers call them, might have eaten the rotting wood, with its calcium-rich crustaceans and protein-laden invertebrates, during egg production, similar to the feeding patterns of modern birds during breeding season.

Regardless of the reason, these findings could change how we think about what big dinosaurs ate.

[h/t Nature News]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios