Did You Know? 25 Tidbits from Vintage Cigarette Cards

Back before rigid cardboard containers, cigarettes were only sold in soft packs. Distributors needed something to keep the packs from bending, so cards were added as stiffeners. W.D.& H.O.Wills started a trend of adding simple illustrations in the late 1880s, thus transforming the cards into collectables. The cards featured pictures of anything from animals to celebrities and they often came with tidbits or facts on the opposite side.

A popular series called “Did you know?” posed intriguing questions and answered them on the back of the card (they were like old fashioned Big Questions). The language is a little awkward and prone to run-on sentences, but the content is interesting and informative. 

Cigarette card production ceased at the beginning of WWII to conserve paper, but thanks to cartophily—the hobby of collecting cards—a good portion have been preserved. Courtesy of the New York Public Library, we can enjoy the delightful illustrations and educational tidbits, without the health hazards of smoking.

1. Do you know why the horse straightens its fore-legs first when rising, and the cow its hind-legs?

The wild ancestors of the horse used to roam the open grassy plains of Europe in vast herds. While resting among the tall grass, they would rise on their fore-legs at the first sign of danger and keep a sharp look-out. The Aurochs, or wild oxen, from which our domestic cows are descended, were creatures of the woods, surviving in the Black Forest down to Roman times. When danger threatened, they would rise on their hand-legs, their heads remaining low in order to watch under the trees for any approaching enemy.

2. Do you know how our national flag was formed?

In 1603, England and Scotland were united under James I., and the first Union flag, a combination of the Red Cross of St. George and the white St. Andrew’s Cross of Scotland, was adopted in 1606. Probably the name “Jack” arose through James I. always signing himself Jacques, and was given to the staff on which the flag was hoisted. The flag is only a “Jack” when flown on the jackstaff of a ship of war. In 1801, upon the union with Ireland, the Cross, or Saltire, of St. Patrick was incorporated. The length of the flag should be double its width, the St. George’s Cross with its white border should be 1/3 the total width.

3. Do you know who built the pyramids, and why?

The Pyramids at Gizeh, near Cairo, are really tombs built by Egyptian kings of the 4th Dynasty. The Great Pyramid was built by Khufu, or Cheops, about 4,700 B.C. (Flinders Petrie), the second Pyramid by Khafra, and the third by Menkaura. Close by are several lesser pyramids which are tombs of other royal personages. Each pyramid is a solid mass of masonry, built up of horizontal layers of stone on a foundation of rock, and containing at its centre one or more tomb-chambers entered by long galleries. The base of the Great Pyramid is over 755 feet, and its height about 481 feet, 150 feet higher than St. Paul’s.

4. Do you know how the sand comes on the sea-shore?

Sand consists almost entirely of crystalline particles of quartz mixed with little fragments of shells. When granite and other rocks are broken up by the weather, many of their constituents are washed away into the soil as food for plants; while clay and quartz remain, and are carried to the sea by the streams and rivers. Round the coasts wind and sea are constantly breaking up the cliffs into shingle, sand, and mud. The grains of sand, being much larger and heavier than the fine particles of clay, settle near the sea-shore, while the finer clay is carried far out to sea.

5. Do you know how the spectroscope acts?

Falling raindrops sometimes break up the light of the sun into coloured beams, and form a rainbow, or natural spectrum. A glass prism possesses this property in greater degree, and this has been utilized in the spectroscope, which is an instrument for studying the spectrum. The picture shows the prism (A) clamped upon a table. On the left is a tube (B) carrying a lens, and provided with a slit through which light is admitted, and on the right is a telescope (C). The “solar spectrum,” or band of coloured light into which sunlight is broken up, is shown in the upper illustration. The dark lines are known as Fraunhofer’s lines.

6. Do you know why shells vary in shape?

Our picture shows four typical shell-shapes; two being shells in one piece, or Univalves, and the other two Bivalves. The sea-ear, periwinkle, limpet,&c., are all found on rocks in shallow water, exposed constantly to the beating of the waves. Their shells are therefore strong, and free from projections which would catch the water and cause them to be swept away. The wedge-like shape of the common mussel has been brought about by its habit of associating in tightly packed masses. The beautiful shell of the scallop has hollow ribs, which make it strong, but light, and adopted for rapid movement through the water.

7. Do you know why the stamp is stuck at the top right-hand corner of the envelope?

When Queen Victoria came to the throne letter-writing was an expensive luxury, and postal rates varied considerably, the charge for a letter being sometimes as high as one and eight-pence. On January 10th, 1840, uniform penny postage came into operation, largely owing to the efforts of Mr. (afterwards Sir) Rowland Hill. The following May “adhesive duty labels,” or postage stamps, were introduced. Originally all stamps were cancelled by hand, and as millions of letters had to be handled, it was necessary to have them stamped in the most convenient place, i.e. the top right-hand corner.

8. Do you know what a tidal wave is?

The term “Tidal Wave” is popularly applied to the enormous waves which follow an earthquake occurring near the sea-coast, as is frequently the case. Disturbances take place in the sea-floor, and occasionally great landslips occur beneath the ocean, with the result that the water is violently agitated for many hours. At first the sea retires a long distance, then returns in a vast tidal wave, or series of waves, overwhelming everything within reach. After the Messina Earthquake of 1908, tidal waves 35 feet high were observed, and waves of over 200 feet in height are said to have been recorded off the South American coast.

9. Do you know what the x-rays are?

Towards the end of the 19th century Sir W. Crookes devised the “Crookes Tube,” a glass vessel exhausted of air, and somewhat like an electric bulb lamp, but with two platinum wires sealed into its walls. When a current from an induction coil is passed through the tube, a beautiful phosphorescent light is seen, and invisible radiations (“X-rays”) are given out which possess the remarkable power of penetrating substances opaque to ordinary light. On the left is shown an X-ray tube in use, and on the right a Sciagram, or “photograph” of the hand, taken after a few seconds’ exposure to the rays.

10. Do you know which animals live longest?

The giant land-tortoises of the Island of the Indian Ocean, and of the Galapagos Islands, off S. America, are considered to be the longest lived of all animals. Their chief rivals are the elephants, but exact information as to the age of such animals is difficult to obtain, and naturalists usually regard the land-tortoise as the Methusaleh of the animal kingdom. One of these venerable creatures, brought to England from the Island of Mauritius in 1897, was known to be at least 200 years old, weighed five cwt.

11. Do you know why an apple turns brown when cut?

This change in colour occurs with many varieties of fruit and vegetables, and also with some kinds of meat. The juice of apples and pears contains many chemicals, among them being one which turns brown when acted upon by ferments or enzymes present in the juice, as soon as the interior of the fruit is exposed to the air. Heat kills these enzymes altogether, hence boiled apples never turn brown. On the other hand the iron in a steel knife appears to encourage them, and an apple cut with such a knife turns brown very quickly. Chemists tell us that the richly coloured compounds of iron are largely responsible for the varied colours of plants and animals.

12. Do you know what amber is?

Amber, which is found in large quantities on the shores of the Baltic and the North Sea, is the fossilized resin of species of pine tree. Beautifully preserved mosses, as well as leaves, flowers, fruit, and even insects are sometimes found embedded in the fossil resin. Large fragments of amber cast up by the waves are collected at ebb-tide, and sometimes the shallow-water is dredged, and the amber raked up from between the boulders, while in other places it is mined in underground galleries. It is chiefly used for beads and other ornaments, for cigarette holders, and for the mouth-pieces of pipes.

13. Do you know what causes the "bedeguar" on the wild rose?

The pretty pink, green, and crimson “Bedeguar,” or “Robin’s Pincushion,” often found on the leaves of the wild rose is really a gall formed by an insect called Rhodites rosae. Each gall is a sort of “nursey” in which the early stage of the insect’s life is passed in safety. The picture on the right shows one of these “nurseries” in section, with the grubs in their cells. The parent gall-fly lays its eggs in one of the leaf-buds, causing an irritation in the leaf-tissue which gives rise to the feathery growth we admire so much.

14. Do you know how a coral reef is formed?

The red coral sometimes worn as an ornament, and the larger branched corals seen in the museums, are really the hard skeletons of the coral animal or polyp, a miniature sea-anemone. Countless generations of these creatures have lived and died in the warm waters of the Pacific and Indian Oceans, piling up cell upon cell until vast structures of hard stony coral “rock” are set up. Sometimes this occurs round the shores of an island, and then a circular “coral reef” is formed, as shown in the lower diagram. The other picture shows a Madrepore Coral, one of the principal reef-builders.

15. Do you know why flowers smell?

Many of our plants require the assistance of insects of various kinds to transfer their pollen from one flower to another and so ensure the formation of the seed. The perfume of the flowers attracts these insects, who fly to gather the honey inside. The honeysuckle, for example, becomes much more fragrant at dusk when the Privet and Convolvulus Hawk-moths appear. These insects are especially attracted by this flower, and seem able to smell its perfume at a great distance. While the moths are diving to the bottom of the long corolla-tubes and sucking the honey, their bodies become well dusted with the pollen.

16. Do you know why we have Easter eggs and hot cross buns?

Eggs were regarded by the ancient Egyptians as emblems of creation, and were adopted in later years by the early Christians at the Easter festival, as symbols of the idea of the Resurrection. The buns now associated with Good Friday are traceable to a very remote period. The Egyptians, Greeks, and Romans offered marked cakes to their gods. The pagan Saxons ate cross-bread in honour of their goddess of Spring, Eostre, from which Easter is derived. The early Christian Church followed the practice, and marked their cakes or buns with the symbol of the cross, to commemorate the Crucifixion.

18. Do you know why our eyes deceive us?

Our eyes deceive us because as optical instruments they are defective. These defects are due chiefly to the curvature of the refractive surfaces, and also to the dispersion of light by the refractive media of the eye. The sensation of light is excited by the irritation of the retina or of the optic nerve. As the retina is a curved surface, long straight lines, particularly when seen from a distance, are apt to appear curved. In diagrams A and C, although the lines are all the same length, upright lines appear the longest. In diagram B the eye is distracted by the radiating lines, and the upright lines appear to curve. This effect is due to an error of judgment, and may be controlled by a great effort.

19. Do you know how crickets and grasshoppers chirp?

Crickets and grasshoppers both produce their characteristic sounds by similar means—friction. The cricket’s familiar chirping sound is caused by the scraping of the file-like ridge, which runs partly across the underside of one of its wing covers, over the smooth projecting nervure of the other wing case. There are several kinds—the house, the field, and the mole cricket. The stridulation or “song” of the grasshopper is produced by friction of the hind legs against portions of the wings or wing-covers. The field cricket is about once inch long, and the great green grasshopper about one and a half inches long.

20. Do you know a butterfly from a moth?

A butterfly flies by day and rests at night. In resting, its stiff wings are raised, so that its four wings sometimes look like two only. A moth generally flies at dusk or at night, and when at rest folds its wings downwards, round its body, the hind wings are folded up and quite hidden beneath the fore wings. A butterfly has generally a little knob at the end of its feelers or antennae, and it cannot hide them, but a moth turns its antennae under its wings when at rest. A butterfly’s body, as a rule—there are some exceptions—is smaller and more slender than that of a moth.

21. Do you know what causes a mirage?

A mirage is an optical illusion sometimes seen in the hot desert, and also in the Polar Regions. This appearance is due to variations in the refractive index of the atmosphere, and is caused by the rays of light being reflected downwards from the surface of a layer of air of greater density, which under certain conditions occasioned by irregular heating, acts almost as a mirror. Palm trees, ships, or houses are apparently seen in positions many miles from their true places, sometimes quite distinct and sometimes upside-down and distorted. In the straits of Messina, Italy, the Fata Morgana is seen, and consists of apparent elongation of objects situated on the opposite shore.

22. Do you know the origin of the wedding ring?

The earliest existing rings are those found in the tombs of ancient Egypt, but probably rings have been worn from the very earliest times. It was an old Roman custom to give an iron ring to celebrate a betrothal; this was a pledge that the contract would be fulfilled. During the 2nd century gold rings took the place of the iron ones. The use of the ring was of a purely secular origin, but received the sanction of the Church during the 11th century. The wedding ring, which originated from the Roman betrothal ring, is now worn as the distinctive mark of a married woman.

23. Do you know why birds' beaks vary in shape?

By a wise provision of nature birds are provided with beaks specially adapted for them to procure theur suitable food. Swallows and nightjars, which catch insects in their flight, have a wide “gape.” Ducks and geese, which find much of their food in shallow water, have broad flat bill with strainer-like edges. Finches have short and strong beaks for crushing seeds. The curlew and the snipe have long curved beaks which enable these birds to probe deeply in the mud in search of worms &c. Eagles and hawks have powerful hooked and pointed beaks for the purpose of tearing the flesh from their victims.

24. Do you know how pearls are formed?

These are produced by certain mollusks, chiefly oysters, the substance being the same as that which lines the interior of many shells, and is known as nacre, or mother-of-pearl. Sometimes a particle of sand, or other foreign matter, gets embedded in the soft tissues of the oyster and causes a great irritation. The oyster secretes and deposits film after film of pearly matter, which in time transforms the intruder into a beautiful pearl. In the museum of Zosima in Moscow, there is a perfect globular Indian pearl of great beauty, weighing 28 carats, and known as “La Pellegrina,” supposed to be the most perfect pearl in the world.

25. Do you know why the flying-fish flies?

More than forty different species of flying-fish are to be seen in tropical and sub-tropical seas, taking their beautiful flight over the water, sometimes singly, but usually in shoals. The flying-fish does not fly as a bird flies, but leaps of out of the water to escape from larger fish who prey upon it. The enormous fins shown in our picture act as planes or parachutes, and steady the fish as it glides through the air at considerable speed, sometimes as far as 500 feet in one flight. Flying-fish travel farthest against the wind, in rough water.

All images courtesy of the New York Public Library Digital Gallery.

Photo Illustration by Lucy Quintanilla. Badge: Gift of Dr. Patricia Heaston; Tin: Gift from Dawn Simon Spears and Alvin Spears, Sr.; Sign, Photograph of Walker Agents: Gift of A’Lelia Bundles / Madam Walker Family Archives. All from the Collection of the Smithsonian National Museum of African American History and Culture. Background/photo border, iStock
Madam C.J. Walker, the First Self-Made Female Millionaire in the U.S.
Photo Illustration by Lucy Quintanilla. Badge: Gift of Dr. Patricia Heaston; Tin: Gift from Dawn Simon Spears and Alvin Spears, Sr.; Sign, Photograph of Walker Agents: Gift of A’Lelia Bundles / Madam Walker Family Archives. All from the Collection of the Smithsonian National Museum of African American History and Culture. Background/photo border, iStock
Photo Illustration by Lucy Quintanilla. Badge: Gift of Dr. Patricia Heaston; Tin: Gift from Dawn Simon Spears and Alvin Spears, Sr.; Sign, Photograph of Walker Agents: Gift of A’Lelia Bundles / Madam Walker Family Archives. All from the Collection of the Smithsonian National Museum of African American History and Culture. Background/photo border, iStock

Like many fortunes, Madam C.J. Walker’s started with a dream. As she later explained to a newspaper reporter, Walker was earning barely a dollar a day as a washerwoman when she had a dream about a man who told her how to create a hair-growing tonic. When she awoke, Walker sent away for the ingredients, investing $1.25 in what she eventually dubbed “Madam Walker’s Wonderful Hair Grower.” The venture would propel her to become one of America’s first black female entrepreneurs—and reportedly the first self-made female millionaire in the nation.

Born Sarah Breedlove on December 23, 1867 to freed slaves on a plantation in Delta, Louisiana, the woman who would become known as Madam C.J. Walker was orphaned by age 7 and married by 14. The couple had one child, Lelia (later known as A’Lelia), but six years into the marriage, Walker’s husband died, by some accounts in a race riot. Walker then worked washing clothes while dreaming of building a better life for her daughter. “As I bent over the washboard and looked at my arms buried in soapsuds,” she later told The New York Times, “I said to myself: ‘What are you going to do when you grow old and your back gets stiff? Who is going to take care of your little girl?’”

By 1903, Walker had relocated to St. Louis and started to work for an African-American hair care company before then moving to Denver, where she had heard that the dry air exacerbated hair and scalp issues. At the time, such complaints were widespread among African-Americans, in part due to a lack of black-focused products and access to indoor plumbing. By the early 1900s, Walker herself had lost much of her hair.

Then came her dream. “[I] put it on my scalp,” she later said of the tonic, “and in a few weeks my hair was coming in faster than it had ever fallen out.”

In 1905, Walker began selling her solution door-to-door and at church events. She took the product on tour, traveling throughout the South and Northeast and recruiting other door-to-door saleswomen. A year later, she married Charles Joseph Walker and established the Madam C. J. Walker Manufacturing Company, and in 1908 founded Lelia College in Pittsburgh, a beauty parlor and school for training Madam Walker brand ambassadors. Two years later, she relocated her business headquarters to Indianapolis—then a commercial hub—where she and a mostly female cadre of top executives produced Wonderful Hair Grower on an industrial scale.

A’Lelia, however, was not content with the Midwestern milieu. In 1913 she convinced her mother to open an office in New York and decamped to Manhattan, acquiring a stately Harlem townhouse designed by Vertner Tandy, the first registered black architect in the state. The home, later nicknamed the Dark Tower after poet Countee Cullen’s “From the Dark Tower,” included a Lelia College outpost on the first floor and living and entertaining spaces on the top three. A’Lelia frequently threw lavish parties there, attended by Harlem Renaissance luminaries such as Zora Neale Hurston, W.E.B. Du Bois, and Langston Hughes.

Walker followed A’Lelia north, where she purchased the adjacent townhouse. Soon, she was a cultural mover and shaker in her own right, joining the NAACP’s New York chapter and helping to orchestrate the Silent Protest Parade in 1917, when roughly 10,000 African-Americans marched down Fifth Avenue as a demonstration against the East St. Louis race riots earlier that year, in which dozens of African-Americans had been killed.

“She became politically active and very much an advocate of women’s economic independence,” Walker’s great-great-granddaughter A’Lelia Bundles, a journalist and biographer, tells Mental Floss. “She used her national platform to advocate for civil rights.”

The same year as the Silent Protest, Walker and a handful of Harlem leaders traveled to the White House to petition for anti-lynching legislation, and donated $5000 to the NAACP’s Anti-Lynching Fund—the largest single gift ever recorded by the fund. In 1916, she established the Madam C. J. Walker Benevolent Association, a program that encouraged Walker brand ambassadors to engage in charity work and hygiene education outreach.

As her empire grew, Walker continued to monumentalize her success. In 1916, she bought a four-acre parcel of land in Irvington, New York, and enlisted Tandy to design her a home to rival the nearby estates of Jay Gould and John D. Rockefeller. Her determination only swelled in the face of realtors who tried to charge her twice the price of the land to discourage her, and incredulous neighbors who reportedly mistook the hair care baroness for a maid when she arrived at the property in her Ford Model T.

Villa Lewaro
Villa Lewaro
Library of Congress, Flickr // No known copyright restrictions

Like her Manhattan residence, the mansion became a popular hang-out for the writers and artists of the Harlem Renaissance. Walker also used the home to give back. “She made a blanket invitation to the returning African American soldiers [from World War I] to please come visit the home,” Bundles says. It also served as a kind of early safe space for A’Lelia and her largely LGBTQ social network.

But almost as soon as the home was complete, Madam Walker’s health began to crumble. Though she was diagnosed with high blood pressure and kidney problems, Walker continued to work and roll out new products. “Like most entrepreneurs she couldn’t figure out how to slow down,” Bundles says. “She needed to rest, but she couldn’t really make herself.”

In the spring of 1919, while on a business trip to St. Louis to unveil five new formulas, Walker fell gravely ill and was shuttled back to Irvington in a private car. That May, she died of kidney failure at the age of 51.

Yet her influence would live on. At the time of her death, an estimated 40,000 black women had been trained as Walker saleswomen. In 1927 the Madame Walker Theatre Center opened in Indianapolis, housing offices, a manufacturing center, and a theatre. Her name on the building reflected her unprecedented imprint on black entrepreneurship.

Madam Walker items at the Women's Museum in Dallas, Texas
Madam Walker items at the Women's Museum in Dallas, Texas
FA2010, Wikimedia Commons // Public Domain

The Madam C.J. Walker brand also survived. In fact, it’s recently been revitalized, after black-owned hair care company Sundial acquired it in 2016, debuting two dozen new formulas exclusively at Sephora last spring. “It’s very glam,” says Bundles, who serves as the line’s historical consultant. In a historic deal in November 2017, consumer goods conglomerate Unilever acquired Sundial’s $240 million portfolio, and as part of the agreement designated $50 million to empower businesses led by women of color.

Walker’s house, known as Villa Lewaro, has had a rockier afterlife, having been owned by the NAACP and then used as an assisted living center for decades. In 1993, stock broker and U.S. ambassador Harold Doley and his wife Helena purchased the property, committing to a years-long restoration process. They’ve recently secured a protective easement for the site, which prevents future buyers from altering the appearance of the home—a means of preserving the house’s history, and that of Madam Walker.

Walker’s legacy is also likely to gain a new round of admirers with the recently announced Octavia Spencer-fronted television show about her life, which is based on a biography by Bundles and is allegedly courting distribution by Netflix.

With her brand in full swing and her life story about to be immortalized on the small screen, it seems that even in death, Madam Walker’s dream lives on.

Hulton Archive//Getty Images
Newly Discovered 350-Year-Old Graffiti Shows Sir Isaac Newton's Obsession With Motion Started Early
Hulton Archive//Getty Images
Hulton Archive//Getty Images

Long before he gained fame as a mathematician and scientist, Sir Isaac Newton was a young artist who lacked a proper canvas. Now, a 350-year-old sketch on a wall, discovered at Newton’s childhood home in England, is shedding new light on the budding genius and his early fascination with motion, according to Live Science.

While surveying Woolsthorpe Manor, the Lincolnshire home where Newton was born and conducted many of his most famous experiments, conservators discovered a tiny etching of a windmill next to a fireplace in the downstairs hall. It’s believed that Newton made the drawing as a boy, and may have been inspired by the building of a nearby mill.

A windmill sketch, believed to have been made by a young Sir Isaac Newton at his childhood home in Lincolnshire, England.
A windmill sketch, believed to have been made by a young Sir Isaac Newton at his childhood home in Lincolnshire, England.
National Trust

Newton was born at Woolsthorpe Manor in 1642, and he returned for two years after a bubonic plague outbreak forced Cambridge University, where he was studying mechanical philosophy, to close temporarily in 1665. It was in this rural setting that Newton conducted his prism experiments with white light, worked on his theory of “fluxions,” or calculus, and famously watched an apple fall from a tree, a singular moment that’s said to have led to his theory of gravity.

Paper was a scarce commodity in 17th century England, so Newton often sketched and scrawled notes on the manor’s walls and ceilings. While removing old wallpaper in the 1920s and '30s, tenants discovered several sketches that may have been made by the scientist. But the windmill sketch remained undetected for centuries, until conservators used a light imaging technique called Reflectance Transformation Imaging (RTI) to survey the manor’s walls.

Conservators using light technology to survey the walls of Woolsthorpe Manor,  the childhood home of Sir Isaac Newton.
A conservator uses light technology to survey the walls of Woolsthorpe Manor, the childhood home of Sir Isaac Newton.
National Trust

RTI uses various light conditions to highlight shapes and colors that aren’t immediately visible to the naked eye. “It’s amazing to be using light, which Newton understood better than anyone before him, to discover more about his time at Woolsthorpe,” conservator Chris Pickup said in a press release.

The windmill sketch suggests that young Newton “was fascinated by mechanical objects and the forces that made them work,” added Jim Grevatte, a program manager at Woolsthorpe Manor. “Paper was expensive, and the walls of the house would have been repainted regularly, so using them as a sketchpad as he explored the world around him would have made sense," he said.

The newly discovered graffiti might be one of many hidden sketches drawn by Newton, so conservators plan to use thermal imaging to detect miniscule variations in the thickness of wall plaster and paint. This technique could reveal even more mini-drawings.

[h/t Live Science]


More from mental floss studios