Original image

13 Scientific Terms Even Smart People Misuse

Original image

When scientists use these words, they typically mean something completely different than what they do when non-scientists use them. Sometimes our definitions are too narrow or too broad, and sometimes, we use terms interchangeably when they actually shouldn't be. We dug deep into the American Museum of Natural History's website to help set the record straight.

1. and 2. Poisonous and venomous

Though the words poison and venom are often used interchangeably—and although they both describe a toxin that interferes with a physiological process—there is a difference. It’s all about how the substance is delivered: Venom is delivered via an anatomical device like fangs, while poison is usually inhaled, ingested, or absorbed. As Mark Siddall, Curator of Invertebrate Zoology at AMNH, explains in the clip above, both the rough-skinned newt and the blue-ringed octopus produce a powerful toxin called tetrodotoxin. But scientists call the octopus venomous because it delivers the substance through a bite, and consider the newt poisonous because the toxin is in its skin.

3. Microbes

When most people hear the word “microbe,” they think of stuff that they can't see that's going to make them sick. But while some do cause disease, not all microbes, or microscopic organisms, are bad; in fact, some are essential for life. Microbes include bacteria, viruses, fungi, and protozoa, and make up most of the life on our planet. For every human cell in our bodies, there are about 10 resident microbes; only a small percentage are pathogens.

4., 5., and 6. Meteor, meteorite, and asteroid

Although some use these terms interchangeably, meteors, meteorites, and asteroids are all different things. Here’s how to use them correctly: Asteroids are the rocky bodies that orbit the Sun mostly between Mars and Jupiter; they’re much smaller than planets, and they're sometimes pulled out of their orbit by the force of Jupiter’s gravity and travel toward the inner solar system. The vast majority of meteorites—rocks that fall to Earth from space and actually reach the Earth's surface—are parts of asteroids. Like meteorites, meteors are objects that enter Earth’s atmosphere from space—but they’re typically grain-sized pieces of comet dust that burn up before reaching the ground, leaving behind trails that we call “shooting stars” as they vaporize.

7. Theory

When most people use the word theory, they're talking about a hunch or guess. But for scientists, a theory is a well-substantiated—and testable—explanation that incorporates laws, hypotheses, and facts. The theories of gravity and evolution, for example, aren’t mere hunches; they explain why apples fall from trees and how so many very different plants and animals exist, and have existed, on Earth. According to AMNH’s website, “A theory not only explains known facts; it also allows scientists to make predictions of what they should observe if a theory is true.” Scientific theories are also testable; if evidence isn’t compatible with a theory, scientists can either go back to refine the theory, or reject it altogether.

8. Fossil

As Lowell Dingus, a research associate at AMNH, explains in the video above, fossils aren’t just the remains of hard parts like bones, teeth, and shells. Under the right conditions, organisms’ soft parts—like skin impressions and outlines—can also fossilize. Other things that qualify as fossils are traces made by organisms, like footprints, burrows, and nests. Fun fact: By most definitions, in order to qualify as a fossil, the specimen must be more than 10,000 years old. If they’re younger than that, the specimens are called subfossils.

9. Common ancestor

When you use the term common ancestor, you might mean that one creature evolved from another. But that oversimplifies it: Humans didn’t evolve from monkeys, for example, but share an ape-like common ancestor with Old World monkeys. According to AMNH's website, "Overwhelming evidence shows us that all species are related—that is, that they are all descended from a common ancestor. More than 150 years ago, Darwin saw evidence of these relationships in striking anatomical similarities between diverse species, both living and extinct. Today, we realize that most such resemblances—in both physical structure and embryonic development—are expressions of shared DNA, the direct outcome of a common ancestry."

10. Hominins

Homo sapiens are the only remaining descendants of a once-varied group of primates called the Hominini. You’re probably used to using the term hominids to refer to humans and their ancestors, and not long ago, you would have been correct—but recently, the definition of that word has expanded to refer to all great apes and their ancestors. Instead, you should be using the word hominins to describe the group comprised of modern humans, extinct human species, and our immediate ancestors.

The first hominin fossil was discovered in 1856, and since then, many hominin fossils, comprising many different species, have been discovered. These species emerged in different places over the past six or seven million years, and some of them even lived simultaneously, as AMNH’s Dr. Ian Tattersall explains in the video above.

11. Dinosaurs

We typically say that all dinosaurs went extinct 65 million years ago, but that’s not actually the case. In fact, if you look out your window, you might see one right now. Birds descended from the common ancestor of all dinosaurs, and so, "just as humans beings are a kind of primate, birds are a kind of dinosaur," Mark Norell, curator of the Division of Palentology at AMNH, explains in the video above. So go ahead: Tell your friends that pigeon is a dinosaur. They'll never look at those birds the same way again.

12. Pterosaurs

Chances are, you probably haven't been using this word much at all. That's because most of us grew up thinking that pterosaurs like the pterodactyl were dinosaurs, and that's what we called them. But these animals weren’t dinosaurs, and they weren’t birds, either. They were actually flying reptiles, cousins to the dinosaurs that evolved on a separate branch of the reptile family tree. Pterosaurs were the first animals after insects to evolve powered flight by flapping their wings to generate lift; you can find out more about pterosaurs from the video above.

13. De-extinction

You probably understand what de-extinction is, but you might not understand what kinds of animals we can bring back—and you have Hollywood to thank for that. Despite what you saw in Jurassic Park, scientists will never be able to resurrect non-avian dinosaurs from extinction; any DNA that might be found is just too old to be used. But for other species, science might find a way in the not-too-distant future. In fact, in 2003, researchers implanted a goat egg with genes from an extinct Spanish mountain goat and used a goat-ibex as a surrogate; the resulting animal lived for just a few minutes, but the experiment proved it could be done.

Scientists expect that technological breakthroughs—and genetic data gathered from specimens—will provide ways to revive recently extinct species (think passenger pigeons, and maybe even wooly mammoths). It sounds cool, but de-extinction comes with a number of thorny scientific and ethical questions, as Museum Curator Ross MacPhee explains in the video above.

Original image
Richard Bouhet // Getty
4 Expert Tips on How to Get the Most Out of August's Total Solar Eclipse
Original image
Richard Bouhet // Getty

As you might have heard, there’s a total solar eclipse crossing the U.S. on August 21. It’s the first total solar eclipse in the country since 1979, and the first coast-to-coast event since June 8, 1918, when eclipse coverage pushed World War I off the front page of national newspapers. Americans are just as excited today: Thousands are hitting the road to stake out prime spots for watching the last cross-country total solar eclipse until 2045. We’ve asked experts for tips on getting the most out of this celestial spectacle.


To see the partial phases of the eclipse, you will need eclipse glasses because—surprise!—staring directly at the sun for even a minute or two will permanently damage your retinas. Make sure the glasses you buy meet the ISO 12312-2 safety standards. As eclipse frenzy nears its peak, shady retailers are selling knock-off glasses that will not adequately protect your eyes. The American Astronomical Society keeps a list of reputable vendors, but as a rule, if you can see anything other than the sun through your glasses, they might be bogus. There’s no need to splurge, however: You can order safe paper specs in bulk for as little as 90 cents each. In a pinch, you and your friends can take turns watching the partial phases through a shared pair of glasses. As eclipse chaser and author Kate Russo points out, “you only need to view occasionally—no need to sit and stare with them on the whole time.”


There are plenty of urban legends about “alternative” ways to protect your eyes while watching a solar eclipse: smoked glass, CDs, several pairs of sunglasses stacked on top of each other. None works. If you’re feeling crafty, or don’t have a pair of safe eclipse glasses, you can use a pinhole projector to indirectly watch the eclipse. NASA produced a how-to video to walk you through it.


Bryan Brewer, who published a guidebook for solar eclipses, tells Mental Floss the difference between seeing a partial solar eclipse and a total solar eclipse is “like the difference between standing right outside the arena and being inside watching the game.”

During totality, observers can take off their glasses and look up at the blocked-out sun—and around at their eerily twilit surroundings. Kate Russo’s advice: Don’t just stare at the sun. “You need to make sure you look above you, and around you as well so you can notice the changes that are happening,” she says. For a brief moment, stars will appear next to the sun and animals will begin their nighttime routines. Once you’ve taken in the scenery, you can use a telescope or a pair of binoculars to get a close look at the tendrils of flame that make up the sun’s corona.

Only a 70-mile-wide band of the country stretching from Oregon to South Carolina will experience the total eclipse. Rooms in the path of totality are reportedly going for as much as $1000 a night, and news outlets across the country have raised the specter of traffic armageddon. But if you can find a ride and a room, you'll be in good shape for witnessing the spectacle.


Your eyes need half an hour to fully adjust to darkness, but the total eclipse will last less than three minutes. If you’ve just been staring at the sun through the partial phases of the eclipse, your view of the corona during totality will be obscured by lousy night vision and annoying green afterimages. Eclipse chaser James McClean—who has trekked from Svalbard to Java to watch the moon blot out the sun—made this rookie mistake during one of his early eclipse sightings in Egypt in 2006. After watching the partial phases, with stray beams of sunlight reflecting into his eyes from the glittering sand and sea, McClean was snowblind throughout the totality.

Now he swears by a new method: blindfolding himself throughout the first phases of the eclipse to maximize his experience of the totality. He says he doesn’t mind “skipping the previews if it means getting a better view of the film.” Afterward, he pops on some eye protection to see the partial phases of the eclipse as the moon pulls away from the sun. If you do blindfold yourself, just remember to set an alarm for the time when the total eclipse begins so you don’t miss its cross-country journey. You'll have to wait 28 years for your next chance.

Original image
The Coolest Meteorological Term You'll Learn This Week
Original image
Two tropical cyclones orbiting around each other in the northwestern Pacific Ocean on July 25, 2017.

What happens when two hurricanes start to invade each other's personal space? It's easy to picture the two hurricanes merging into one megastorm that tears across the ocean with twice the fury of a normal storm, but what really happens is less dramatic (although it is a beautiful sight to spy on with satellites). Two cyclones that get too close to one another start to feel the pull of a force called the Fujiwhara Effect, a term that's all the rage in weather news these days.

The Fujiwhara Effect occurs when two cyclones track close enough to each other that the storms begin orbiting around one another. The counterclockwise winds spiraling around each cyclone force them to participate in what amounts to the world's largest game of Ring Around the Rosie. The effect is named after Sakuhai Fujiwhara, a meteorologist who studied this phenomenon back in the early 1900s.

The extent to which storms are affected by the Fujiwhara Effect depends on the strength and size of each system. The effect will be more pronounced in storms of equal size and strength; when a large and small storm get too close, the bigger storm takes over and sometimes even absorbs its lesser counterpart. The effect can have a major impact on track forecasts for each cyclone. The future of a storm completely depends on its new track and the environment it suddenly finds itself swirling into once the storms break up and go their separate ways.

We've seen some pretty incredible examples of the Fujiwhara Effect over the years. Hurricane Sandy's unusual track was in large part the result of the Fujiwhara Effect; the hurricane was pulled west into New Jersey by a low-pressure system over the southeastern United States. The process is especially common in the northwestern Pacific Ocean, where typhoons fire up in rapid succession during the warmer months. We saw a great example of the effect just this summer when two tropical cyclones interacted with each other a few thousand miles off the coast of Japan.

Weather Channel meteorologist Stu Ostro pulled a fantastic animated loop of two tropical cyclones named Noru and Kulap swirling around each other at the end of July 2017 a few thousand miles off the coast of Japan.

Typhoon Noru was a small but powerful storm that formed at about the same latitude as Kulap, a larger but much weaker storm off to Noru's east. While both storms were moving west in the general direction of Japan, Kulap moved much faster than Noru and eventually caught up with the latter storm. The Fujiwhara Effect caused Typhoon Noru to stop dead in its tracks, completely reverse its course and eventually perform a giant loop over the ocean. Typhoon Noru quickly strengthened and became the dominant cyclone; the storm absorbed Kulap and went on to become a super typhoon with maximum winds equivalent to a category 5 hurricane.


More from mental floss studios