CLOSE
Original image
J. Howard Miller

The New Faces of Rosie the Riveter

Original image
J. Howard Miller

The term “Rosie the Riveter” was first used in a song in 1942 about a woman who took a wartime job in a factory. It became a popular term to use in reference to the millions of American women who went to work in factories making munitions, airplanes, and other war supplies, as well as those who filled other jobs vacated when men served in World War II. Norman Rockwell did an illustration for the Saturday Evening Post of a woman with a rivet gun and a lunchpail that said “Rosie” in 1943. That was the popular image associated with Rosie the Riveter during the war.

Meanwhile, the Westinghouse War Production Coordinating Committee commissioned Pittsburgh artist J. Howard Miller to make motivational posters for their factories. One of them was titled “We Can Do It!” It was only seen inside Westinghouse factories for a two-week period in 1943, then went under the radar until the early 1980s. The woman on the poster was modeled after a wire service photograph of a teenage factory worker. Geraldine Hoff Doyle was 17 years old in 1942 when a photographer took her picture as she worked, wearing her red polka-dot bandana. She had no idea that her picture had been used as the model for the motivational poster until the ‘80s. That’s when the poster was resurrected and used to promote women’s rights. It had fallen into the public domain, unlike the Norman Rockwell painting. Since then, the “We Can Do It!” poster has been known as “Rosie the Riveter” in the public consciousness. And it’s been used to imply motivation and power in many ways.

Unveiled in May, Houston artist Anat Ronen combined the image of 17-year-old Pakistani activist Malala Yousafzai with the Rosie poster to make a statement of power. The mural, titled "Yes She Can!”, is at the Avis Frank Gallery in Houston.

Watch Ronen as she paints the mural in this time-lapse video.

The Rosie the Riveter WWII Home Front National Historical Park in Richmond, California, uses the “We Can Do It!” image, too. This one is their Facebook page banner.

In 2009, the Shotgun Players presented the play This World in a Woman’s Hands, about the women who worked in the Richmond, California, shipyards during World War II. Artist Richard Black designed a poster for the play, updating the image with a black woman wearing a welder’s helmet. This design was also sold on t-shirts at the nearby national park dedicated to Rosie.

The image is being used to raise funds to Save The Willow Run Bomber Plant. The factory, just east of Ypsilanti, Michigan, produced more than 8,600 B-24 Liberator bomber aircraft in World War II, largely made by women. A campaign hopes to raise $8 million to preserve the facility as the Yankee Air Museum.

Michelle Obama’s image was used in a poster to promote the Recovery.gov website in 2009 with the tagline “Together, We Can Get This Country Moving Again.” For some reason, she’s facing left.

Just this week, Beyoncé posted her own version on Instagram.

Although her former bandmate in Destiny’s Child, Kelly Rowland, did it four years ago.

A number of people have use the imagery of the “We Can Do It!” poster for personal pictures. Carla posed in front of her own slogan to show her stage of pregnancy.

DeviantART member Abranime made a two-woman tribute poster to celebrate International Women’s Day.

DeviantART member Steven Donegani created Diana The Riveter as a housewarming gift for his girlfriend.

Rosie has been recreated in other cultures to convey power and independence among all kinds of women. You can find plenty more photographs and artworks using the “We Can Do It!” template at Pinterest and DeviantART.

Of course, you don’t have to buy new clothes and construct a backdrop to be in a Rosie the Riveter poster yourself. You can drop your face into the poster with the Face in Hole generator. Or just change the wording on the original poster, as I did.

Original image
iStock // Ekaterina Minaeva
arrow
technology
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
iStock
arrow
Live Smarter
Working Nights Could Keep Your Body from Healing
Original image
iStock

The world we know today relies on millions of people getting up at sundown to go put in a shift on the highway, at the factory, or in the hospital. But the human body was not designed for nocturnal living. Scientists writing in the journal Occupational & Environmental Medicine say working nights could even prevent our bodies from healing damaged DNA.

It’s not as though anybody’s arguing that working in the dark and sleeping during the day is good for us. Previous studies have linked night work and rotating shifts to increased risks for heart disease, diabetes, weight gain, and car accidents. In 2007, the World Health Organization declared night work “probably or possibly carcinogenic.”

So while we know that flipping our natural sleep/wake schedule on its head can be harmful, we don’t completely know why. Some scientists, including the authors of the current paper, think hormones have something to do with it. They’ve been exploring the physiological effects of shift work on the body for years.

For one previous study, they measured workers’ levels of 8-OH-dG, which is a chemical byproduct of the DNA repair process. (All day long, we bruise and ding our DNA. At night, it should fix itself.) They found that people who slept at night had higher levels of 8-OH-dG in their urine than day sleepers, which suggests that their bodies were healing more damage.

The researchers wondered if the differing 8-OH-dG levels could be somehow related to the hormone melatonin, which helps regulate our body clocks. They went back to the archived urine from the first study and identified 50 workers whose melatonin levels differed drastically between night-sleeping and day-sleeping days. They then tested those workers’ samples for 8-OH-dG.

The difference between the two sleeping periods was dramatic. During sleep on the day before working a night shift, workers produced only 20 percent as much 8-OH-dG as they did when sleeping at night.

"This likely reflects a reduced capacity to repair oxidative DNA damage due to insufficient levels of melatonin,” the authors write, “and may result in cells harbouring higher levels of DNA damage."

DNA damage is considered one of the most fundamental causes of cancer.

Lead author Parveen Bhatti says it’s possible that taking melatonin supplements could help, but it’s still too soon to tell. This was a very small study, the participants were all white, and the researchers didn't control for lifestyle-related variables like what the workers ate.

“In the meantime,” Bhatti told Mental Floss, “shift workers should remain vigilant about following current health guidelines, such as not smoking, eating a balanced diet and getting plenty of sleep and exercise.”

SECTIONS
BIG QUESTIONS
arrow
BIG QUESTIONS
SECTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES