CLOSE
Original image
Library of Congress

A 1639 Map Shows California as an Island

Original image
Library of Congress

In the early days of mapmaking, plotting out the world was no easy task. It's not surprising that cartographers got some things wrong (it's probably more surprising how much they got right). One of the most widespread misconceptions in the 16th century involved an area of the mostly unexplored continent of North America, a place called California, which mapmakers often portrayed as an island.

The trouble began not with explorers, but with a writer. In his 1510 book Las sergas de Esplandián, Garci Rodríguez de Montalvo wrote "Know, that on the right hand of the Indies there is an island called California very close to the side of the Terrestrial Paradise; and it is peopled by black women, without any man among them, for they live in the manner of Amazons."

The island of California was strictly a figment of de Montalvo's imagination. Still, though the western coast of North America had typically been shown as a peninsula in the 1500s, when Spanish explorers visited the area in the 1600s, they concluded that the area was, in fact, an island.

At that time, maps were very valuable guides to new territory and, therefore, closely guarded. So how did this myth perpetuate? "The story is, the Dutch raided a Spanish ship and found a secret Spanish map and brought it back to Amsterdam and circulated it from there,” map collector Glen McLaughlin told Wired. (You can see McLaughlin's entire collection of Island of California maps, which he donated to Stanford, online here.)

And that may have been exactly what the Spanish wanted. "I've been told that Spain knew it wasn't an island, but it was politically expedient for others to think it was," writer and map enthusiast Rebecca Solnit said in a Stanford press release. "They weren't going to share what they knew with everybody else."

By 1622, drawing California as an island was all the rage among European mapmakers. The map above, part of the collection of the Library of Congress, was drawn by Dutch cartographer Johannes Vingboons in 1639. The misconception persisted even after Eusebio Kino, a Jesuit priest, led an expedition in the area between 1698 and 1701 and published a report—complete with map called "A Passage by Land to California"—that debunked the notion. It would take another half-century before California became reattached to the continent in maps. In 1747, even King Ferdinand VI of Spain weighed in—his royal decree declared "California is not an island."

The Afternoon Map is a semi-regular feature in which we post maps and infographics. In the afternoon. Semi-regularly.

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Opening Ceremony
fun
arrow
These $425 Jeans Can Turn Into Jorts
May 19, 2017
Original image
Opening Ceremony

Modular clothing used to consist of something simple, like a reversible jacket. Today, it’s a $425 pair of detachable jeans.

Apparel retailer Opening Ceremony recently debuted a pair of “2 in 1 Y/Project” trousers that look fairly peculiar. The legs are held to the crotch by a pair of loops, creating a disjointed C-3PO effect. Undo the loops and you can now remove the legs entirely, leaving a pair of jean shorts in their wake. The result goes from this:

501069-OpeningCeremony2.jpg

Opening Ceremony

To this:

501069-OpeningCeremony3.jpg

Opening Ceremony

The company also offers a slightly different cut with button tabs in black for $460. If these aren’t audacious enough for you, the Y/Project line includes jumpsuits with removable legs and garter-equipped jeans.

[h/t Mashable]

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES