CLOSE
iStock
iStock

What’s the Difference Between “Mostly Sunny” and “Partly Cloudy”?

iStock
iStock

Reader Marcus from Louisville wrote in to ask, “What’s the difference between ‘mostly sunny’ and ‘partly cloudy’ (or for that matter, ‘mostly cloudy’ and ‘partly sunny’) in weather forecasts? Are any of those even specifically defined terms?”

The short answer: about 1 to 4 oktas.

What’s an okta? That’s a unit of measurement that meteorologists use when they’re forecasting cloud conditions, equal to 1/8 of the sky (though sometimes 1/10 is used). When the forecast is delivered, the number of oktas covered by opaque clouds (meaning that you can’t see through them, and the sun/moon/stars/sky are hidden) is described using “mostly sunny,” “partly cloudy” and other terms we’re used to hearing. Each of these is defined by the National Oceanic and Atmospheric Administration and the National Weather Service in terms of oktas of cloud cover. The NWS Operations Manual breaks it down like this:

Daytime Forecast

Day or Nighttime Forecast

Cloud Conditions

Cloudy

Cloudy

8/8 opaque clouds

Mostly Cloudy 

Mostly Cloudy

6/8 - 7/8 opaque clouds

Partly Sunny

Partly Cloudy

3/8 - 5/8 opaque clouds

Mostly Sunny

Mostly Clear

1/8 - 2/8 opaque clouds

Sunny

Clear

0/8 opaque clouds

The difference in terms is a matter of how much cloud cover there is. Interestingly, partly sunny and partly cloudy mean the exact same thing—but partly cloudy is the correct term for nighttime conditions because you can’t see the sun. 

“Fair” skies is another cloud cover term that’s sometimes used. Technically, it means that less than three oktas are covered with opaque clouds, and that there’s “no precipitation, no extreme conditions of visibility, wind or temperature, and generally pleasant weather.” If you don’t know that definition, though, “fair” sounds pretty vague on its own, so the NWS discourages forecasters from using  it. 

A lot of terms used in precipitation forecasts are also precisely defined by the NWS and are less subjective than they sometimes sound. The qualifying terms that express uncertainty about rain and snow (like “chance of snow” or “scattered thunderstorms”) are laid out like this:

Chance of precipitation

Expression of uncertainty

Area Qualifier

0%

none

none

10%

Slight chance

Isolated, few

20%

Slight chance

Widely Scattered

30-50%

Chance

Scattered

60-70%

Likely

Numerous

80-100%

none

none

The area qualifiers are used when the chance of precipitation somewhere in the forecast area is very high, and correspond to the the expected coverage within the area (so “scattered thunderstorms” would mean that rain is very likely, but will affect only 30 to 50 percent of the area).

nextArticle.image_alt|e
iStock
arrow
Weather Watch
Thanks to Desert Dust, Eastern Europe Is Covered in Orange Snow
iStock
iStock

Certain areas of Eastern Europe are starting to look a bit like Mars. Over the last few days, snowy places like Sochi, Russia have experienced an unusual snowfall that coated mountains in orange powder, according to the BBC.

The orange snow was the result of winds blowing sand from the Sahara east to places like Moldova, Romania, Bulgaria, Ukraine, and Russia. The sand mixes with precipitation to form orange-tinted snow. According to the BBC, the phenomenon occurs semi-regularly, turning snow orange about once every five years, but this year is especially sandy. As a result, skiers are navigating slopes that look like they're from a different world, as you can see in the video below from The Guardian.

The Sahara rarely gets snow, but when it does, the landscape can look somewhat similar, as you can see in this image of the Atlas mountains in Morocco.

Instagram is currently filled with photos and videos from Eastern Europe featuring the odd-looking snow. Check out a few samples below.

[h/t BBC]

nextArticle.image_alt|e
Jessica Kourkounis, Getty Images
arrow
Weather Watch
What Is Thundersnow?
Jessica Kourkounis, Getty Images
Jessica Kourkounis, Getty Images

The northeastern United States is dealing with its second major nor'easter in a week, with rain and heavy snow—and the associated power outages—cutting a path across the Mid-Atlantic and New England. But news of the adverse impacts of the snowstorm is being accompanied by an unusual buzzword: thundersnow. Thundersnow occurs during a thunderstorm that produces snow instead of rain. The mechanisms that produce rainy thunderstorms and snowy thunderstorms are largely the same, even if the air temperature is below freezing.

A band of snow can become strong enough to produce lightning through two processes known as convection and forcing. Convection occurs when an area of warm air quickly rises through cooler air above it. Convective snow is most common during lake effect snow events like those you’d find on Lake Ontario or Lake Erie, since the process requires extreme vertical temperature gradients that can result from bitterly cold air flowing over a warm body of water.

Forcing is slightly different. A strengthening low-pressure system involves fast, dynamic changes in the atmosphere, especially when one of these storm systems quickly gains strength. Such a fast-developing storm can cause large amounts of lift in the atmosphere, a process that forces air to swiftly rise like you’d see during convection. This creates intense bands of snow that can grow so strong that they produce thunder and lightning. This process is responsible for the thundersnow that occurs during blizzards and nor’easters, those powerful storms that regularly hit the eastern coast of the U.S. during the winter. Thundersnow can be pretty exciting—just ask The Weather Channel's Jim Cantore:

The name “thundersnow” can be a bit misleading. One of the most enjoyable things about a snowfall is how silent it is outside when there’s a thick blanket of snow on the ground. Snow absorbs sound waves so efficiently that you can usually only hear ambient noises immediately around where you’re standing. Snow muffles the sound of thunder for the same reason. Thunder that might be audible for many miles during a rainy thunderstorm might only be audible for a few thousand feet away from where the lightning struck. Unless the lightning strikes very close to where you are, you might only see a bright flash during thundersnow without ever hearing the thunder.

While thundersnow is a fascinating phenomenon to encounter, it does involve lightning, after all, and it’s just as dangerous as any other lightning bolt you’d see in a rainy thunderstorm. If you’re ever lucky enough to experience thundersnow, the event is best enjoyed indoors and out of harm’s way.

This piece originally ran in 2017.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios