CLOSE
Original image
Thinkstock

The Upside To Attachment Anxiety

Original image
Thinkstock

This week, NYMag.com launched a new offshoot called Science of Us, which covers news and trends in the behavioral science world. One of their first pieces examines a recent study in Social Psychological and Personality Science that argues different types of negative attachment affect our morality.

Let's consider some terms first. Both attachment anxiety and attachment avoidance are diagnoses that refer to a person's behavior in intimate relationships as a result of their treatment in childhood. People with attachment anxiety are insecure in relationships, craving an intense level of intimacy that they worry will never be achieved as a result of inconsistent care and attention as an infant. Conversely, attachment avoidance results from a total lack of affection as a child and manifests itself with "commitment-phobic" behavior or even abstaining from intimate relationships altogether.

In the study, 7533 participants were sorted into three categories—attachment anxiety, attachment avoidance, and secure attachment—and were then asked a series of moralizing yes or no questions. For example, is it okay to throw a sick person off a lifeboat to save the lives of the others within it?

Anxious people tend to be highly empathetic and mentally inflexible—preferring clear delineations and predictability—and so researchers hypothesized that this would result in a staunch moral stance. Their findings backed this up:

Although high attachment avoidance predicted weaker moral concern for harm and unfairness, high attachment anxiety predicted greater moral concern for harm, unfairness, and impurity, and these associations were mediated by empathy and disgust sensitivity.

The correlation between avoidance and immorality was shaky—varying based on the exact aspect being measured. However, anxious people displayed a strong association with moral answers, to the point of "disgust" at immoral behavior. Being judgmental and moralizing in romantic relationships might not be a recipe for success, but at least according to this study, it correlates to high standards for the world at large.

Original image
iStock
arrow
The Body
11 Facts About the Thumb
Original image
iStock

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

When it comes to the fingers on your hand, the thumb definitely does its own thing. Thumbs only have two bones, so they're obviously shorter, and they play a very important role that no other finger can claim; thanks to their unique saddle-like joint shape, and a little muscle known as the abductor pollicis brevis, you can bend and stretch your thumbs opposite your fingers to grip things. This is why they're known as "opposable thumbs." To bring you these 11 facts about the thumb, Mental Floss spoke with three experts on this unique digit: Barbara Bergin, an orthopedic surgeon in Houston; Loren Fishman, medical director of Manhattan Physical Medicine and Rehabilitation, in NYC; and Ryan Katz, attending hand surgeon at the Curtis Hand Center, located at the Medstar Union Memorial Hospital in Baltimore.

1. OPPOSABLE THUMBS MAY HAVE FREED UP OUR ANCESTORS' MOUTHS FOR LANGUAGE.

The evolution of a thumb helped our ancestors evolve to be better at defense, allowing for throwing and clubbing activities. Moreover, Fishman says, it may have even contributed to our cognitive function. "Some say this is why we have language," he says, "because we can hold things in our hands and [therefore] use our mouths for something else—such as discussing the functions of the thumb."

2. THUMBS HAVE THEIR OWN PULSE.

You might have noticed that medical professionals take a pulse with the middle and index finger. The reason is because there's a big artery in the thumb, the princeps pollicis artery, and arteries pulse, making it difficult to feel a pulse in a neck if you're using your thumb.

3. THE THUMB SEPARATES US FROM OTHER ANIMALS. MOSTLY.

"The thumb is wonderful. It evolved in such a way that we can use it to do so many amazing things, and it's one of the things that separates us from other animals," Bergin says. A handful of other animals, mostly primates, have opposable thumbs, or toes, as the case may be. These include orangutans, chimpanzees, a phylum of frogs known as phyllomedusa, some lemurs, and giant pandas—although their thumb-like apparatus is really just an extra sesamoid bone that acts like a thumb.

4. TOES CAN BECOME THUMBS.

If you should lose a thumb, fear not, says Katz. "It can be rebuilt by surgeons using your big toe." This specialized surgery uses microvascular surgery techniques to transfer your big toe to your hand, where it will function almost exactly as your thumb did. "The toe is then brought to life by sewing together small arteries and veins under a microscope," Katz says, a complicated surgery that has become vastly more sophisticated over the years. The second toe can be used too, as you can see in this medical journal, but we warn you: It's not for the faint of heart.

5. … BUT IS A THUMB WORTH LOSING A TOE OVER?

It may not seem like a big deal to lose one thumb—after all, you've got another one. But Katz cites the American Medical Association's "Guides to the Evaluation of Permanent Impairment" [PDF], which states your thumb is so important that a complete amputation "will result in a 40 percent impairment to the whole hand." In fact, they claim that it would take "a complete amputation of the middle, ring, and small fingers to equal the impairment of an amputated thumb."

6. IT'S BETTER THAN HAVING YOUR HAND SEWN TO YOUR FOOT.

Katz also points out that "there used to be a common surgical procedure for thumb reconstruction, where the patient's hand was sewn to their foot for a period of time." This procedure was called the Nicoladani procedure, after the German surgical innovator Carol Nicoladoni. "It was a precursor to transplant surgery and plastic or reconstructive surgery as we know it today," he says.

7. YOUR THUMB MAKES AN ASTONISHINGLY WIDE VARIETY OF MOTIONS.

Other than pinching and grasping, Katz points out that the thumb "translates, rotates, and flexes all at once." This coordinated set of motions provides strength and dexterity. "Thus it's the thumb that allows us to easily pen an essay, turn a nut, pick up a coin, or button a shirt."

8. THAT DEXTERITY ALSO MAKES IT FRAGILE.

The thumb may appear to only have two knuckles, but it actually has a third, right above the wrist. This is called the first carpometacarpal joint. If that starts to hurt, or gets big enough to look like a bump or a mass, you may have carpometacarpal joint disorder (CMC), a common condition that is partly genetic and partly from repetitive use, according to Bergin. "You can get arthritis in the other joints, too, but this one is the most debilitating," she says. "First it becomes painful, and then you lose the ability to use it." Surgery can help with the pain, but it won't restore full mobility.

9. PAIN IN YOUR THUMB MAY REQUIRE LIFESTYLE CHANGES.

Bergin suggests small lifestyle changes so you don't need to grip anything too hard can make a huge difference, such as buying milk jugs with handles or using an electric toothbrush. "There are a lot of things we can do [to help] on a daily basis that shouldn't affect our quality of life," she suggests.

10. SWIPING RIGHT MIGHT BE DANGEROUS.

While we generally associate thumb arthritis with older people, Bergin says she now sees it in people in their forties and even thirties. Other studies have suggested that frequent phone use can be damaging. "There must be a genetic component to premature wearing of the thumb," she says. If it runs in your family, it's a good idea to be proactive and try to avoid repetitive gripping activities.

11. WHAT IT MEANS IF YOUR THUMB IS NUMB.

If instead of pain you're experiencing numbness of the thumb that extends to your index and middle fingers, you may be showing early symptoms of carpal tunnel syndrome. Fortunately, this isn't an emergency. "The condition takes a long time to become a big problem" Bergin says. People can sometimes help the condition by wearing wrist braces and getting physical therapy. If you just can't take it, "you can get surgery at any point if you failed to improve with bracing," she says. The surgery can reduce mobility, but it should take away the numbness and pain.

arrow
science
Scientists Study the Starling Invasion Unleashed on America by a Shakespeare Fan

On a warm spring day, the lawn outside the American Museum of Natural History in Manhattan gleams with European starlings. Their iridescent feathers reflect shades of green and indigo—colors that fade to dowdy brown in both sexes after the breeding season. Over the past year, high school students from different parts of the city came to this patch of grass for inspiration. "There are two trees at the corner I always tell them to look at," Julia Zichello, senior manager at the Sackler Educational Lab at the AMNH, recalls to Mental Floss. "There are holes in the trees where the starlings live, so I was always telling them to keep an eye out."

Zichello is one of several scientists leading the museum's Science Research Mentoring Program, or SRMP. After completing a year of after-school science classes at the AMNH, New York City high school students can apply to join ongoing research projects being conducted at the institution. In a recent session, Zichello collaborated with four upperclassmen from local schools to continue her work on the genetic diversity of starlings.

Before researching birds, Zichello earned her Ph.D. in primate genetics and evolution. The two subjects are more alike than they seem: Like humans, starlings in North America can be traced back to a small parent population that exploded in a relatively short amount of time. From a starting population of just 100 birds in New York City, starlings have grown into a 200-million strong flock found across North America.

Dr. Julia Zichello
Dr. Julia Zichello
©AMNH

The story of New York City's starlings began in March 1890. Central Park was just a few decades old, and the city was looking for ways to beautify it. Pharmaceutical manufacturer Eugene Schieffelin came up with the idea of filling the park with every bird mentioned in the works of William Shakespeare. This was long before naturalists coined the phrase "invasive species" to describe the plants and animals introduced to foreign ecosystems (usually by humans) where their presence often had disastrous consequences. Non-native species were viewed as a natural resource that could boost the aesthetic and cultural value of whatever new place they called home. There was even an entire organization called the American Acclimatization Society that was dedicated to shipping European flora and fauna to the New World. Schieffelin was an active member.

He chose the starling as the first bird to release in the city. It's easy to miss its literary appearance: The Bard referenced it exactly once in all his writings. In the first act of Henry IV: Part One, the King forbids his knight Hotspur from mentioning the name of Hotspur's imprisoned brother Mortimer to him. The knight schemes his way around this, saying, "I'll have a starling shall be taught to speak nothing but 'Mortimer,' and give it him to keep his anger still in motion."

Nearly three centuries after those words were first published, Schieffelin lugged 60 imported starlings to Central Park and freed them from their cages. The following year, he let loose a second of batch of 40 birds to support the fledgling population.

It wasn't immediately clear if the species would adapt to its new environment. Not every bird transplanted from Europe did: The skylark, the song thrush, and the bullfinch had all been subjects of American integration efforts that failed to take off. The Acclimatization Society had even attempted to foster a starling population in the States 15 years prior to Schieffelin's project with no luck.

Then, shortly after the second flock was released, the first sign of hope appeared. A nesting pair was spotted, not in the park the birds were meant to occupy, but across the street in the eaves of the American Museum of Natural History.

Schieffelin never got around to introducing more of Shakespeare's birds to Central Park, but the sole species in his experiment thrived. His legacy has since spread beyond Manhattan and into every corner of the continent.

The 200 million descendants of those first 100 starlings are what Zichello and her students made the focus of their research. Over the 2016-2017 school year, the group met for two hours twice a week at the same museum where that first nest was discovered. A quick stroll around the building reveals that many of Schieffelin's birds didn't travel far. But those that ventured off the island eventually spawned populations as far north as Alaska and as far south as Mexico. By sampling genetic data from starlings collected around the United States, the researchers hoped to identify how birds from various regions differed from their parent population in New York, if they differed at all.

Four student researchers at the American Museum of Natural History
Valerie Tam, KaiXin Chen, Angela Lobel and Jade Thompson (pictured left to right)
(©AMNH/R. Mickens)

There are two main reasons that North American starlings are appealing study subjects. The first has to do with the founder effect. This occurs when a small group of individual specimens breaks off from the greater population, resulting in a loss of genetic diversity. Because the group of imported American starlings ballooned to such great numbers in a short amount of time, it would make sense for the genetic variation to remain low. That's what Zichello's team set out to investigate. "In my mind, it feels like a little accidental evolutionary experiment," she says.

The second reason is their impact as an invasive species. Like many animals thrown into environments where they don't belong, starlings have become a nuisance. They compete with native birds for resources, tear through farmers' crops, and spread disease through droppings. What's most concerning is the threat they pose to aircraft. In 1960, a plane flying from Boston sucked a thick flock of starlings called a murmuration into three of its four engines. The resulting crash killed 62 people and remains the deadliest bird-related plane accident to date.

Today airports cull starlings on the premises to avoid similar tragedies. Most of the birds are disposed of, but some specimens are sent to institutions like AMNH. Whenever a delivery of dead birds arrived, it was the students' responsibility to prep them for DNA analysis. "Some of them were injured, and some of their skulls were damaged," Valerie Tam, a senior at NEST+m High School in Manhattan, tells Mental Floss. "Some were shot, so we had to sew their insides back in."

Before enrolling in SRMP, most of the students' experiences with science were limited to their high school classrooms. At the museum they had the chance to see the subject's dirty side. "It's really different from what I learned from textbooks. Usually books only show you the theory and the conclusion, but this project made me experience going through the process," says Kai Chen, also a senior at NEST+m.

After analyzing data from specimens in the lab, an online database, and the research of previous SRMP students, the group's hypothesis was proven correct: Starlings in North America do lack the genetic diversity of their European cousins. With so little time to adapt to their new surroundings, the variation between two starlings living on opposite coasts could be less than that between the two birds that shared a nest at the Natural History Museum 130 years ago.

Students label samples in the lab.
Valerie Tam, Jade Thompson, KaiXin Chen and Angela Lobel (pictured left to right) label samples with Dr. Julia Zichello.
©AMNH/C. Chesek

Seeing how one species responds to bottlenecking and rapid expansion can provide important insight into species facing similar conditions. "There are other populations that are the same way, so I think this data can help [scientists],” Art and Design High School senior Jade Thompson says. But the students didn't need to think too broadly to understand why the animal was worth studying. "They do affect cities when they're searching for shelter," Academy of American Studies junior Angela Lobel says. “They can dig into buildings and damage them, so they're relevant to our actual homes as well.”

The four students presented their findings at the museum's student research colloquium—an annual event where participants across SRMP are invited to share their work from the year. Following their graduation from the program, the four young women will either be returning to high school or attending college for the first time.

Zichello, meanwhile, will continue where she left off with a new batch of students in the fall. Next season she hopes to expand her scope by analyzing older specimens in the museum's collections and obtaining bird DNA samples from England, the country the New York City starlings came from. Though the direction of the research may shift, she wants the subject to remain the same. "I really want [students] to experience the whole organism—something that's living around them, not just DNA from a species in a far-away place." she says. "I want to give them the picture that evolution is happening all around us, even in urban environments that they may not expect."

SECTIONS

More from mental floss studios