Why Do Dogs Like to Hide Under Beds?

iStock/alexkich
iStock/alexkich

Most mornings you wake up and your dog is practically sitting on top of you, or jumping around the bed trying to get you just as excited for the day as they are. But sometimes, dogs will hide under the bed so that you can’t even find them. Why do they do it? Like so many other canine behavior, the answer isn't exactly straightforward.

Typically, it's a harmless behavior. Dogs will hide under the bed (or another dark, small area) mostly because they find it a comfortable spot to relax and take a nap. As "den animals," small, contained spaces make dogs feel safe and help them relax easier. Dogs also enjoy the temperature that is created under the bed or the fresh, untouched carpet.

If your dog enjoys being under the bed due to it being a dark, contained space, you can try to recreate a similar spot like this in the house. For example, a crate or kennel with a soft bed and covered with a blanket would be a great place for your dog to unwind.

There are other, more concerning reasons why your dog could be hiding under the bed, including anxiety or illness. If dogs are dealing with body aches, for example, they may want to find a tight place to disappear for a bit. A dog also may hide during times of high anxiety—such as thunderstorms or parties with lots of people. They’ll feel safer if they're tucked away under the bed, as it separates them from any chaotic noise or stress. (Cats have been known to do it, too.)

If your dog is prone to bouts of anxiety, there are ways to help relieve their stress. The Nest reports that experts at the University of California Davis School of Veterinary Medicine suggest mimicking the sounds that seem to trigger their anxiety, such as thunderstorms or fireworks, to condition them:

"Starting with the volume at a minimum, give your dog praise and treats when he does not respond negatively to the sound. Gradually increasing the volume and continuing to reinforce his behavior positively eventually will condition him so that once fearsome noises no longer produce a negative response. Keeping training sessions to about five minutes per day and twice or three times a day prevents overwhelming your pup."

If a dog is hiding under the bed just to relax, this behavior is probably not dangerous. However, if you think there’s something wrong—or it's an unusual place to find your pupper—you should take him or her to the vet, just to be sure.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Is There An International Standard Governing Scientific Naming Conventions?

iStock/Grafissimo
iStock/Grafissimo

Jelle Zijlstra:

There are lots of different systems of scientific names with different conventions or rules governing them: chemicals, genes, stars, archeological cultures, and so on. But the one I'm familiar with is the naming system for animals.

The modern naming system for animals derives from the works of the 18th-century Swedish naturalist Carl von Linné (Latinized to Carolus Linnaeus). Linnaeus introduced the system of binominal nomenclature, where animals have names composed of two parts, like Homo sapiens. Linnaeus wrote in Latin and most his names were of Latin origin, although a few were derived from Greek, like Rhinoceros for rhinos, or from other languages, like Sus babyrussa for the babirusa (from Malay).

Other people also started using Linnaeus's system, and a system of rules was developed and eventually codified into what is now called the International Code of Zoological Nomenclature (ICZN). In this case, therefore, there is indeed an international standard governing naming conventions. However, it does not put very strict requirements on the derivation of names: they are merely required to be in the Latin alphabet.

In practice a lot of well-known scientific names are derived from Greek. This is especially true for genus names: Tyrannosaurus, Macropus (kangaroos), Drosophila (fruit flies), Caenorhabditis (nematode worms), Peromyscus (deermice), and so on. Species names are more likely to be derived from Latin (e.g., T. rex, C. elegans, P. maniculatus, but Drosophila melanogaster is Greek again).

One interesting pattern I've noticed in mammals is that even when Linnaeus named the first genus in a group by a Latin name, usually most later names for related genera use Greek roots instead. For example, Linnaeus gave the name Mus to mice, and that is still the genus name for the house mouse, but most related genera use compounds of the Greek-derived root -mys (from μῦς), which also means "mouse." Similarly, bats for Linnaeus were Vespertilio, but there are many more compounds of the Greek root -nycteris (νυκτερίς); pigs are Sus, but compounds usually use Greek -choerus (χοῖρος) or -hys/-hyus (ὗς); weasels are Mustela but compounds usually use -gale or -galea (γαλέη); horses are Equus but compounds use -hippus (ἵππος).

This post originally appeared on Quora. Click here to view.

Can Soap Get Dirty?

iStock/vintagerobot
iStock/vintagerobot

When you see lovely little bars of lemon-thyme or lavender hand soaps on the rim of a sink, you know they are there to make you feel as fresh as a gardenia-scented daisy. We all know washing our hands is important, but, like washcloths and towels, can the bars of hand soap we use to clean ourselves become dirty as well?

Soaps are simply mixtures of sodium or potassium salts derived from fatty acids and alkali solutions during a process called saponification. Each soap molecule is made of a long, non-polar, hydrophobic (repelled by water) hydrocarbon chain (the "tail") capped by a polar, hydrophilic (water-soluble) "salt" head. Because soap molecules have both polar and non-polar properties, they're great emulsifiers, which means they can disperse one liquid into another.

When you wash your dirty hands with soap and water, the tails of the soap molecules are repelled by water and attracted to oils, which attract dirt. The tails cluster together and form structures called micelles, trapping the dirt and oils. The micelles are negatively charged and soluble in water, so they repel each other and remain dispersed in water—and can easily be washed away.

So, yes, soap does indeed get dirty. That's sort of how it gets your hands clean: by latching onto grease, dirt and oil more strongly than your skin does. Of course, when you're using soap, you're washing all those loose, dirt-trapping, dirty soap molecules away, but a bar of soap sitting on the bathroom counter or liquid soap in a bottle can also be contaminated with microorganisms.

This doesn't seem to be much of a problem, though. In the few studies that have been done on the matter, test subjects were given bars of soap laden with E. coli and other bacteria and instructed to wash up. None of the studies found any evidence of bacteria transfer from the soap to the subjects' hands. (It should be noted that two of these studies were conducted by Procter & Gamble and the Dial Corp., though no contradictory evidence has been found.)

Dirty soap can't clean itself, though. A contaminated bar of soap gets cleaned via the same mechanical action that helps clean you up when you wash your hands: good ol' fashioned scrubbing. The friction from rubbing your hands against the soap, as well as the flushing action of running water, removes any harmful microorganisms from both your hands and the soap and sends them down the drain.

This story was updated in 2019.

SECTIONS

arrow
LIVE SMARTER