CLOSE
AMNH
AMNH

Michael Habib, Pterosaur Flight Expert

AMNH
AMNH

The American Museum of Natural History's latest exhibition, Pterosaurs: Flight in the Age of Dinosaurs, opens today (check out just a few of the things we learned at the exhibit here). At the media preview, we spoke with pterosaur flight expert Dr. Michael Habib about figuring out how these reptiles flew.

When you and other scientists are trying to figure out how pterosaurs flew, do you start with the fossils? Or do you start with an animal alive today because we know the flight mechanics and work backward?

We do a little bit of both. Mostly, you start with fossils. Then you go to the principles of physics—things that are fundamentals that you know are true, because physical laws make them true and they're going to be true for everything. Then you build models from that and validate them using the living things: Does the model make good predictions in birds? Does it make good predictions in bats? If it does, I'm relatively confident that it will make good predictions in pterosaurs.

The trick, of course, is the predictions all have to do with anatomy, and make predictions about the anatomy. To say, "Alright, if this hypothesis is true, then it would look like this and if it was false, it would not look like this." And then you test to see if that is what the anatomy looks like in the animals you have. That's kinda tricky, and part of what you do to make it reasonable, is you pick the tractable questions and tractable approaches. An intractable question for pterosaur flight is "Exactly how fast does a Quetzalcoatlus fly?" And a tractable question is, "Would quetzalcoatlus fly faster or slower than a living large bird?" Comparable questions are more tractable than absolutes.

That question is actually not completely intractable. I can get a good idea of how fast it could probably fly. But I couldn't give you an absolute answer because we don't know exactly what the wing shape was on the animal. So actually the answer would be—it would vary. Flying animals change their speed based on how much fat they've burned on that long trip, for example. They start off as a big fat bird and show up as a little skinny bird. So there is no single answer to that anyway. But I can give you an idea of range. What I can say with more confidence is how pterosaurs would fly relative to certain first principle models and relative living animals.

Pterosaurs came in a huge array of sizes. How would you say the 10 inch little guy, Nemicolopterus cryptus, flies compared to something bigger like Quetzalcoatlus?

Small things tend to be more maneuverable. They fly slowly in terms of mass of speed, but they tend to be more maneuverable. And landing and takeoff is less energetic for them. In this particular case, the animal is not just smaller, it also has other wing characteristics that are associated with highly maneuverable flights, so it would be less efficient but more maneuverable. Quetzalcoatlus would be a faster flyer, overall, because it's so much larger. It would probably be a flat glider that would flap in bursts and they would glide for long periods; it would probably be a soaring animal. Soaring is what we call it when you have an external source of lift—you're gliding, but you're not dropping relative to the ground because you've got some rising air, which is your source of external lift. Quetzalcoatlus probably hunted on the ground and flew between places to eat or escape predators or things like that. 

Would there be differences in take off and landing, too, depending on the animal's size?

We have some good ideas. Take off is sort of my specialty. It turns out that in all fliers—including unpowerfliers like gliding snakes, for example, even flying squirrels, things like that—in all the ones we've measured, launch is effectively ballistic. So the launch is not initiated with the wings. You don't flap yourself into the air, you jump yourself into the air. And then you engage your wings. Now, we don't see that. It's so fast. What it looks like to us is that a pigeon is pulling himself into the air with his wings, but he's actually pushing his feet and then pulling himself higher with his wings. Which might seem like a nitpick, but in terms of physics, it is fundamentally different.

Some animals run into the jump—especially on water; that's mostly where you see them running—some just jump. For pterosaurs, we're fairly certain they would leap as well. Since they walked on both feet and hands, the expectation is that they would probably leap with all four limbs—we call it a quadripedic launch. I have not run the test for all known pterosaurs by any stretch of the imagination. For all the ones I have done analysis on, it appears that that is true, so I would expect small and large ones use quadripedic launch.

That said, a little guy has a much larger room for error than a big one in the sense of, it doesn't have to put as much "oomf" into it. It could, from a power perspective, maybe launch bipedally, but there's no reason to think that it would. A small pterosaur wouldn't have to leap nearly as hard [as a big one] before it could engage its wings. It would probably get relatively much higher, launch more vertically, if it wanted, when it took off.

Big guys would have to launch at a much more shallow angle. That means they need some clearing in front of them in order to take off, which limits their habitat a little bit, and they're going to have to devote a lot of their muscle power to launch, which means you would expect those animals—as per the predictions I’ve mentioned before—if this model were true, you'd expect that there'd be certain anatomical features related to launch that would be exaggerated in big pterosaurs that wouldn't be in small ones. And that seems to hold true. Big pterosaurs are devoting more of their anatomy to that initial takeoff phase because it's a more rigorous phase for them.

What kind of computer programs are you using to model pterosaur flight?

For me personally, I do a lot of my stuff on a Matlab. It's the big bruiser on the market, but it's flexible. The equations it collapses through are surprisingly simple structures. The best expressions are the ones that are as simple as possible. I spend most of my time on a white board, quite frankly.

There's another Jurassic Park movie coming out. What would you want the director to get right about the pterosaurs in that movies if they include them?

Take off is my personal bias. Might as well see if they get that right. And it would actually be kind of embarrassing if they didn't, because they’ve done TV shows and gotten it right. So if Jurassic Park 4 didn't get it right, that would be embarrassing.

nextArticle.image_alt|e
iStock
arrow
Animals
Pigeons Are Secretly Brilliant Birds That Understand Space and Time, Study Finds
iStock
iStock

Of all the birds in the world, the pigeon draws the most ire. Despite their reputation as brainless “rats with wings,” though, they’re actually pretty brilliant (and beautiful) animals. A new study adds more evidence that the family of birds known as pigeons are some of the smartest birds around, as Quartz alerts us.

In addition to being able to distinguish English vocabulary from nonsense words, spot cancer, and tell a Monet from a Picasso, pigeons can understand abstract concepts like space and time, according to the new study published in Current Biology. Their brains just do it in a slightly different way than humans’ do.

Researchers at the University of Iowa set up an experiment where they showed pigeons a computer screen featuring a static horizontal line. The birds were supposed to evaluate the length of the line (either 6 centimeters or 24 centimeters) or the amount of time they saw it (either 2 or 8 seconds). The birds perceived "the longer lines to have longer duration, and lines longer in duration to also be longer in length," according to a press release. This suggests that the concepts are processed in the same region of the brain—as they are in the brains of humans and other primates.

But that abstract thinking doesn’t occur in the same way in bird brains as it does in ours. In humans, perceiving space and time is linked to a region of the brain called the parietal cortex, which the pigeon brains lack entirely. So their brains have to have some other way of processing the concepts.

The study didn’t determine how, exactly, pigeons achieve this cognitive feat, but it’s clear that some other aspect of the central nervous system must be controlling it. That also opens up the possibility that other non-mammal animals can perceive space and time, too, expanding how we think of other animals’ cognitive capabilities.

[h/t Quartz]

nextArticle.image_alt|e
iStock
arrow
Animals
The Queen's Racing Pigeons Are in Danger, Due to an Increase in Peregrine Falcons
iStock
iStock

Queen Elizabeth is famous for her love of corgis and horses, but her pet pigeons don't get as much press. The monarch owns nearly 200 racing pigeons, which she houses in a luxury loft at her country estate, Sandringham House, in Norfolk, England. But thanks to a recent boom in the region’s peregrine falcon population, the Queen’s swift birds may no longer be able to safely soar around the countryside, according to The Telegraph.

Once endangered, recent conservation efforts have boosted the peregrine falcon’s numbers. In certain parts of England, like Norfolk and the city of Salisbury in Wiltshire, the creatures can even find shelter inside boxes installed at local churches and cathedrals, which are designed to protect potential eggs.

There’s just one problem: Peregrine falcons are birds of prey, and local pigeon racers claim these nesting nooks are located along racing routes. Due to this unfortunate coincidence, some pigeons are failing to return to their owners.

Pigeon racing enthusiasts are upset, but Richard Salt of Salisbury Cathedral says it's simply a case of nature taking its course. "It's all just part of the natural process,” Salt told The Telegraph. "The peregrines came here on their own account—we didn't put a sign out saying 'room for peregrines to let.' Obviously we feel quite sorry for the pigeons, but the peregrines would be there anyway."

In the meantime, the Queen might want to keep a close eye on her birds (or hire someone who will), or consider taking advantage of Sandringham House's vast open spaces for a little indoor fly-time.

[h/t The Telegraph]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios