6 Factors That Determine Whether or Not You Remember Your Dreams

iStock
iStock

Within the scientific community, dreams are still something of a mystery. Many experiments have been conducted and many theories have been put forth, but researchers still don’t fully understand why or how we dream. Further complicating matters is the fact that everyone dreams, but some people never remember their subconscious escapades.

However, improvements in brain imaging and recent physiological studies have brought us one step closer to answering the question of why some people remember their dreams more than others. There’s no simple, definitive explanation, “but there are a number of things that correlate,” Dr. Deirdre Leigh Barrett, a psychology professor at Harvard Medical School and author of The Committee of Sleep, tells Mental Floss. Barrett shared a few of the factors that can affect your dream recall.

1. SEX

Women, on average, recall more dreams than men. Researchers aren’t exactly sure why, but Barrett says it could be a biological or hormonal difference. Alternatively, women might be more cognizant of their dreams because they tend to be more interested in dreams in general. However, Barrett notes that differences between men and women in regard to dream recall are “modest” and that there are greater differences within each sex than between the sexes. In other words: There are plenty of women with low dream recall and plenty of men with high dream recall.

2. AGE

As we get older, it often gets harder to recall our dreams. Your ability to remember dreams improves in late childhood and adolescence, and tends to peak in your twenties, Barrett says. After that point, people often experience a gradual drop-off in dream recall. However, there are exceptions, and people sometimes experience the opposite.

3. PERSONALITY

Again, this is by no means a prescriptive rule, but there seems to be a correlation between certain personality traits and high dream recall. "More psychologically-minded people tend to have higher dream recall, and people who are more practical and externally focused tend to have lower recall," Barrett says. In addition, better dream recall has a “mild correlation” with better recall while completing certain memory tasks during waking hours, according to Barrett.

4. AMOUNT OF SLEEP

The amount of sleep one gets on average is one of the most important factors related to dream recall. People dream every 90 minutes during the REM (rapid eye movement) sleep cycle. However, those REM periods get longer throughout the night, meaning that you’re doing the most dreaming toward the morning—generally right before you wake up. If you only sleep four hours instead of eight, you’re only getting about 20 percent of your dream time. For this reason, some people report remembering more of their dreams on the weekend, when they have the chance to catch up on sleep.

5. BRAIN ACTIVITY

Thanks to brain imaging, scientists now have a better idea of which parts of the brain are associated with dreaming. A part of the brain that processes information and emotions is more active in people who remember their dreams more often, according to a 2014 study. This region toward the back of the brain, called the temporo-parietal junction (TPJ), may help people pay more attention to external stimuli. In turn, this may promote something called instrasleep wakefulness.

"This may explain why high dream recallers are more reactive to environmental stimuli, awaken more during sleep, and thus better encode dreams in memory than low dream recallers," Dr. Perrine Ruby told the International Business Times. "Indeed, the sleeping brain is not capable of memorizing new information; it needs to awaken to be able to do that."

Higher activity in the TPJ and another region of the brain called the medial prefrontal cortex (MPFC) might also "promote the mental imagery and/or memory encoding of dreams," researchers wrote in the study's abstract.

More recently, in 2017, researchers discovered that high dream recall is also linked to higher activity toward the front of the brain. The pre-frontal cortex is the part of the brain that deals with abstract thinking, so it makes sense that it has been linked to dream recall and lucid dreaming (being aware that one is dreaming), Barrett says.

6. RESPONSE TO EXTERNAL STIMULI

In a similar vein, people who remember their dreams more frequently also tend to exhibit more brain activity after hearing their name spoken aloud while they’re awake, according to a 2013 study. Upon hearing their names, a group of “high recallers,” who remember their dreams almost every night, experienced a greater decrease in a brain wave called the alpha wave than a group of “low recallers,” who remember their dreams once or twice a month. This decrease in alpha waves is likely preceded by an increase in brain activity upon hearing their names. Essentially, people with greater dream recall tend to experience activity in more regions of their brain in response to sounds. According to Barrett, there may be an evolutionary explanation for this.

“Evolution wants us to get restorative sleep but it also wanted us to wake up to danger and check it out and be able to go back to sleep quickly afterwards,” she says. Think of the all the dangers our prehistoric ancestors had to deal with, and it's clear that this response is important for survival. In essence, high recallers are “probably just a little more aware and watching during their dream, and that helps make it a long-term memory.”

So what can you do to help you remember your dreams? It may sound simple, but before you go to bed, think to yourself, “I’m going to remember my dreams tonight.” The very act of thinking about dreaming can make a big difference.

“You could say that just reading this article is somewhat more likely to make you recall a dream tonight,” Barrett says. “People who are taking a class on dreams or reading a book on dreams—any short-term intervention of paying more attention to them—tends to create a short-term blip in dream recall.”

When you first wake up, don’t do anything except lie in bed and try to recall any dreams you had. If something comes back to you, write it down or use a voice recorder to crystallize your thoughts. Dreams are still in your short-term memory when you wake up, so they’re fragile and easy to forget.

If you don’t remember anything, Barrett says it’s still helpful to assess how you feel when you first awaken. Are you happy, sad, or anxious? “Sometimes if you just stay with whatever emotion or little bit of content you woke up with,” she says, “a dream will come rushing back.”

Why Does Humidity Make Us Feel Hotter?

Tomwang112/iStock via Getty Images
Tomwang112/iStock via Getty Images

With temperatures spiking around the country, we thought it might be a good time to answer some questions about the heat index—and why humidity makes us feel hotter.

Why does humidity make us feel hotter?

To answer that question, we need to talk about getting sweaty.

As you probably remember from your high school biology class, one of the ways our bodies cool themselves is by sweating. The sweat then evaporates from our skin, and it carries heat away from the body as it leaves.

Humidity throws a wrench in that system of evaporative cooling, though. As relative humidity increases, the evaporation of sweat from our skin slows down. Instead, the sweat just drips off of us, which leaves us with all of the stinkiness and none of the cooling effect. Thus, when the humidity spikes, our bodies effectively lose a key tool that could normally be used to cool us down.

What's relative about relative humidity?

We all know that humidity refers to the amount of water contained in the air. However, as the air’s temperature changes, so does the amount of water the air can hold. (Air can hold more water vapor as the temperature heats up.) Relative humidity compares the actual humidity to the maximum amount of water vapor the air can hold at any given temperature.

Whose idea was the heat index?

While the notion of humidity making days feel warmer is painfully apparent to anyone who has ever been outside on a soupy day, our current system owes a big debt to Robert G. Steadman, an academic textile researcher. In a 1979 research paper called, “An Assessment of Sultriness, Parts I and II,” Steadman laid out the basic factors that would affect how hot a person felt under a given set of conditions, and meteorologists soon used his work to derive a simplified formula for calculating heat index.

The formula is long and cumbersome, but luckily it can be transformed into easy-to-read charts. Today your local meteorologist just needs to know the air temperature and the relative humidity, and the chart will tell him or her the rest.

Is the heat index calculation the same for everyone?

Not quite, but it’s close. Steadman’s original research was founded on the idea of a “typical” person who was outdoors under a very precise set of conditions. Specifically, Steadman’s everyman was 5’7” tall, weighed 147 pounds, wore long pants and a short-sleeved shirt, and was walking at just over three miles per hour into a slight breeze in the shade. Any deviations from these conditions will affect how the heat/humidity combo feels to a certain person.

What difference does being in the shade make?

Quite a big one. All of the National Weather Service’s charts for calculating the heat index make the reasonable assumption that folks will look for shade when it’s oppressively hot and muggy out. Direct sunlight can add up to 15 degrees to the calculated heat index.

How does wind affect how dangerous the heat is?

Normally, when we think of wind on a hot day, we think of a nice, cooling breeze. That’s the normal state of affairs, but when the weather is really, really hot—think high-90s hot—a dry wind actually heats us up. When it’s that hot out, wind actually draws sweat away from our bodies before it can evaporate to help cool us down. Thanks to this effect, what might have been a cool breeze acts more like a convection oven.

When should I start worrying about high heat index readings?

The National Weather Service has a handy four-tiered system to tell you how dire the heat situation is. At the most severe level, when the heat index is over 130, that's classified as "Extreme Danger" and the risk of heat stroke is highly likely with continued exposure. Things get less scary as you move down the ladder, but even on "Danger" days, when the heat index ranges from 105 to 130, you probably don’t want to be outside. According to the service, that’s when prolonged exposure and/or physical activity make sunstroke, heat cramps, and heat exhaustion likely, while heat stroke is possible.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

This article has been updated for 2019.

Chimpanzees Bond by Watching Movies Together, Too

Windzepher/iStock via Getty Images
Windzepher/iStock via Getty Images

Scientists at the Wolfgang Kohler Primate Research Center in Germany recently discovered that, like humans, chimpanzees bond when they watch movies together, the BBC reports.

In the study, published in Proceedings of the Royal Society B, researchers stationed pairs of chimpanzees in front of screens that showed a video of a family of chimps playing with a young chimp. They found that afterward, the chimps would spend more time grooming and interacting with each other—or simply being in the same part of the room—than they would without having watched the video.

They gave the chimps fruit juice to keep them calm and occupied while they viewed the video, and they chose a subject that chimps have previously proven to be most interested in: other chimps. They also used eye trackers to ensure the chimps were actually watching the video. If you’ve ever watched a movie with friends, you might notice similarities between the chimps’ experience and your own. Drinks (and snacks) also keep us calm and occupied while we watch, and we like to watch movies about other humans. Since this study only showed that chimps bond over programs about their own species, we don’t know if it would work the same way if they watched something completely unrelated to them, like humans do—say, The Lion King.

Bonding through shared experiences was thought to be one of the traits that make us uniquely human, and some researchers have argued that other species don’t have the psychological mechanisms to realize that they’re even sharing an experience with another. This study suggests that social activities for apes don’t just serve utilitarian purposes like traveling together for safety, and that they’re capable of a more human-like social closeness.

The part that is uniquely human about this study is the fact that they were studying the effect of a screen, as opposed to something less man-made. The chimps in question have participated in other studies, so they may be more accustomed to that technology than wild apes. But the study demonstrates that we’re not the only species capable of social interaction for the sake of social interaction.

[h/t BBC]

SECTIONS

arrow
LIVE SMARTER