iStock
iStock

Why the World's Most Popular Wine Grapes Are Vulnerable to a Pandemic

iStock
iStock

When you're in the wine shop looking for the right wine to pair with your meal or bring to the party, the variety on the shelves seems rich and diverse, their taste influenced by the grape, soil, climate, and age. Among the most famous are the French "noble wines"—cabernet sauvignon, merlot, pinot noir, chardonnay, riesling, and sauvignon blanc—so called for being associated with high quality and easy growth in a variety of places.

But it turns out that many of the most famous grapes in the world are like nobility in another way: They're as inbred as a royal family, and have been for hundreds—and in some cases thousands—of years.

"Scientists are getting really concerned that this is setting up the perfect scenario for a great pandemic," Kevin Begos, whose new book, Tasting the Past, explores the history, archaeology, genetics, and future of wine, said at a recent book release event in New York City. They fear that a single merciless pathogen could wipe out many grapes around the world in the same way that a single fungus, Phytophthora infestans, eradicated the variety of potato common across Ireland in the 1840s, causing the great famine.

The vast majority of wine produced across the world derives from a single grapevine species: Vitis venifera. The domesticated grape has thousands of varieties, and quite a lot of genetic diversity among them, according to a 2010 paper in PNAS that analyzed genome-wide genetic variation of more than 1000 samples of V. vinifera subsp. vinifera and its wild relative, V. vinifera subsp. sylvestris. But that's not true for all grapes: Nearly 75 percent of cultivars had a first-degree relationship to at least one other. They were either parents or children.

The most popular commercial wines are made from a handful of these inbred grapes. Sauvignon blanc, for instance, has a first-degree relationship with cabernet sauvignon, cabernet franc, and chenin blanc, among many others. That genetically cozy family isn't unusual. You see it all over the grapevine.

Another problem is how grapes reproduce in vineyards. Instead of pollinating these hermaphroditic plants or growing them from seeds, as might happen naturally, grape growers generally make new plants from cuttings of existing ones, essentially cloning the same vines over and over.

They use this method to produce consistent flavor quality—and it's nice to decant a bottle of your favorite wine and know what to expect with the first sip. But this practice has kept some popular grapes in relative genetic stasis for a long time. Take pinot, parent of chardonnay and gamay, which has been cloned for 2000 years. Genetically, it's remained virtually unchanged—but the organisms that prey on it have not. "All those insects and pathogens and mildews that attack grape vines have been evolving," Begos said. "And they always figure out new ways to attack the grape vines."

Despite the wide use of pesticides—in the last 10 years, 260 million pounds of pesticides were put on wine grapes in California alone—"the industry is losing the arms race to the pathogens," Sean Myles, an author of the 2010 PNAS grape genome study, told Begos in Tasting the Past. "It’s really only a matter of time. If we just keep using the same genetic material, we’re doomed.”

The good news is that grape diversity could be the key to preventing rosé season from disappearing. Scientists are looking outside the noble wines and their popular cousins to old, wild, and lesser-known varieties, which "turn out to have natural disease resistance, and they've kept evolving," Begos said.

The idea is create hybrids selected for specific traits—not just pest resistance, but an ability to withstand greater heat in an era of climate change, adaptability to a wider variety of soils, and other resilient qualities.

One effort is VitisGen, a USDA-funded project involving researchers from a handful of American universities, including UC Davis, Cornell University, and the University of Minnesota. By studying the genomes of a variety of grapes, they're creating an enormous database of genetic traits. They're also experimenting with crossbreeding. Some of this genetic tweaking is decidedly old school, including pollinating grapes by hand.

Begos tells Mental Floss that they're especially interested in developing grapes that are resistant to downy mildew (Plasmopara viticola), a potential plague a la the potato famine. It can cause total crop loss if not controlled.

When it comes to selecting traits, it probably won't be flavor they'll be pulling from wild grapes, which "are really kind of terrible," Begos said. (In Tasting the Past, he quotes wine experts who describe the flavor of a fox grape as combining "animal fur and candied fruits.”) It's generally hardiness they're looking for. The concord grape in your kid's PB&J, for example, is "really tough," Begos said. Select some of its hardy genes and cross them with, say, the peppery flavor genes of the syrah grape—which the researchers have also identified—and maybe you can create a genetically resilient hybrid.

"The University of Minnesota has already had success identifying cold-hardy wine grape genes, and breeding them into new varieties that have impressed the toughest critics," Begos says, pointing to a 2015 top 10 wine list from New York Times food critic Eric Asimov. Number two on the list was made from hybrid grapes developed by UM.

You can do your part to encourage wine diversity by getting adventurous with your vino, trying a grape you've never heard of or blends from new regions. Check out organic and small wineries, which are experimenting with old cultivars and new varieties. And don't be afraid of a future with genetically tweaked grapes. We've been modifying them as long as we've been growing them. As Begos writes of these efforts, "At heart they’re unlocking flavor, disease-resistance, and growth genes that may be tens of millions of years old. To me these scientists are doing exactly what ancient Babylonians, Egyptians, and Greeks did: refining wine grapes to produce tastes we enjoy."

nextArticle.image_alt|e
MARS Bioimaging
The World's First Full-Color 3D X-Rays Have Arrived
MARS Bioimaging
MARS Bioimaging

The days of drab black-and-white, 2D X-rays may finally be over. Now, if you want to see what your broken ankle looks like in all its full-color, 3D glory, you can do so thanks to new body-scanning technology. The machine, spotted by BGR, comes courtesy of New Zealand-based manufacturer MARS Bioimaging.

It’s called the MARS large bore spectral scanner, and it uses spectral molecular imaging (SMI) to produce images that are fully colorized and in 3D. While visually appealing, the technology isn’t just about aesthetics—it could help doctors identify issues more accurately and provide better care.

Its pixel detectors, called “Medipix” chips, allow the machine to identify colors and distinguish between materials that look the same on regular CT scans, like calcium, iodine, and gold, Buzzfeed reports. Bone, fat, and water are also differentiated by color, and it can detect details as small as a strand of hair.

“It gives you a lot more information, and that’s very useful for medical imaging. It enables you to do a lot of diagnosis you can’t do otherwise,” Phil Butler, the founder/CEO of MARS Bioimaging and a physicist at the University of Canterbury, says in a video. “When you [have] a black-and-white camera photographing a tree with its leaves, you can’t tell whether the leaves are healthy or not. But if you’ve got a color camera, you can see whether they’re healthy leaves or diseased.”

The images are even more impressive in motion. This rotating image of an ankle shows "lipid-like" materials (like cartilage and skin) in beige, and soft tissue and muscle in red.

The technology took roughly a decade to develop. However, MARS is still working on scaling up production, so it may be some time before the machine is available commercially.

[h/t BGR]

nextArticle.image_alt|e
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios