CLOSE
Original image
Wikimedia Commons

Minnesota's Mysterious Viking Runestone

Original image
Wikimedia Commons

If you want to learn about someplace, you can always pick up a textbook. But if you want to get to know a place, you're going to have to dig a little deeper. And what you find there might be a little strange.The Strange States series will take you on a virtual tour of America to uncover the unusual people, places, things, and events that make this country such a unique place to call home.

This week we’re heading to the land of gophers, lakes, and Vikings—the North Star State, Minnesota.

In 1898, Olof Olsson Ohman was clearing trees from his land in Alexandria, Minnesota when he came upon a 200-pound slab of sandstone in the roots of a stunted poplar tree. The stone, about 30 inches long, 16 inches wide, and 6 inches thick, had runes carved on it. Ohman took the slab to a Scandinavian-language newspaper in nearby Kensington, where the runes were translated. The inscription told of a Viking expedition dating back to the year 1362—well over one hundred years before Europeans set foot in North America.

Historians were obviously interested in the Kensington Runestone, especially Hjalmar Holand, an early advocate of the theory that Vikings had come to America long before Columbus. He purchased the stone for $10 and, over the next 40 years, traveled the world, taking the stone to dozens of experts in geology, linguistics, and anthropology to have it examined, hoping it could be verified as a genuine artifact. However, over 100 years since its discovery, the authenticity of the runestone is still up for debate. It seems for every expert who says it’s real, there’s another who claims it’s a hoax. The truth may never be fully revealed.

But for many people in Minnesota, there is no question—the Kensington Runestone is the real deal, no matter what the experts say. In fact, for Alexandria, where the stone was discovered, it has become a large part of the city’s identity. Not only is the actual runestone kept at the Runestone Museum, but there is a 25-foot tall granite replica of the stone marking the spot where Ohman found it. The replica, as well as a 28-foot tall Viking statue known as Big Ole, was hauled to New York in 1964 on a flatbed truck mocked up to look like a Viking longboat as part of an exhibit at the World’s Fair. Both have since returned home and are proudly displayed in Alexandria, which still claims to be the “Birthplace of America.”

Have the scoop on an unusual person, place or event in your state? Tell me about it on Twitter (@spacemonkeyx) and maybe I’ll include it in a future edition of Strange States!

See all the entries in our Strange States series here.

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Nick Briggs/Comic Relief
entertainment
arrow
What Happened to Jamie and Aurelia From Love Actually?
May 26, 2017
Original image
Nick Briggs/Comic Relief

Fans of the romantic-comedy Love Actually recently got a bonus reunion in the form of Red Nose Day Actually, a short charity special that gave audiences a peek at where their favorite characters ended up almost 15 years later.

One of the most improbable pairings from the original film was between Jamie (Colin Firth) and Aurelia (Lúcia Moniz), who fell in love despite almost no shared vocabulary. Jamie is English, and Aurelia is Portuguese, and they know just enough of each other’s native tongues for Jamie to propose and Aurelia to accept.

A decade and a half on, they have both improved their knowledge of each other’s languages—if not perfectly, in Jamie’s case. But apparently, their love is much stronger than his grasp on Portuguese grammar, because they’ve got three bilingual kids and another on the way. (And still enjoy having important romantic moments in the car.)

In 2015, Love Actually script editor Emma Freud revealed via Twitter what happened between Karen and Harry (Emma Thompson and Alan Rickman, who passed away last year). Most of the other couples get happy endings in the short—even if Hugh Grant's character hasn't gotten any better at dancing.

[h/t TV Guide]

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES