The Surprising Reason Why Pen Caps Have Tiny Holes at the Top

iStock
iStock

If you’re an avid pen chewer, or even just a diehard fan of writing by hand, you’re probably well acquainted with the small hole that tops off most ballpoint pen caps, particularly those classic Bic Cristal pens. The reason it’s there has nothing to do with pen function, it turns out. As Science Alert recently reported, it’s actually designed to counter human carelessness.

Though it’s arguably unwise—not to mention unhygienic—to chomp or suck on a plastic pen cap all day, plenty of people do it, especially kids. And inevitably, that means some people end up swallowing their pen caps. Companies like Bic know this well—so they make pen caps that won’t impede breathing if they’re accidentally swallowed.

This isn’t only a Bic requirement, though the company’s Cristal pens do have particularly obvious holes. The International Organization for Standardization, a federation that sets industrial standards for 161 countries, requires it. ISO 11540 specifies that if pens must have caps, they should be designed to reduce the risk of asphyxiation if they’re swallowed.

It applies to writing instruments “which in normal or foreseeable circumstances are likely to be used by children up to the age of 14 years.” Fancy fountain pens and other writing instruments that are clearly designed for adult use don’t need to have holes in them, nor do caps that are large enough that you can’t swallow them. Any pen that could conceivably make its way into the hands of a child needs to have an air hole in the cap that provides a minimum flow of 8 liters (about 2 gallons) of air per minute, according to the standard [PDF].

Pen cap inhalation is a real danger, albeit a rare one, especially for primary school kids. A 2012 study [PDF] reported that pen caps account for somewhere between 3 and 8 percent of “foreign body aspiration,” the official term for inhaling something you’re not supposed to. Another study found that of 1280 kids (ages 6 to 14) treated between 1997 and 2007 for foreign body inhalation in Beijing, 34 had inhaled pen caps.

But the standards help keep kids alive. In that Beijing study, none of the 34 kids died, and the caps were successfully removed by doctors. That wasn’t always the case. In the UK, nine children asphyxiated due to swallowing pen caps between 1970 and 1984. After the UK adopted the international standard for air holes in pen caps, the number of deaths dropped precipitously [PDF]. Unfortunately, it’s not foolproof; in 2007, a 13-year-old in the UK died after accidentally swallowing his pen cap.

Even if you can still breathe through that little air hole, getting a smooth plastic pen cap out of your throat is no easy task for doctors. The graspers they normally use to take foreign bodies out of airways don’t always work, as that 2012 case report found, and hospitals sometimes have to employ different tools to get the stubbornly slippery caps out (in that study, they used a catheter that could work through the hole in the cap, then inflated a small balloon at the end of the catheter to pull the cap out). The procedure doesn’t exactly sound pleasant. So maybe resist the urge to put your pen cap in your mouth.

[h/t Science Alert]

Does Sound Travel Faster or Slower in Space?

iStock/BlackJack3D
iStock/BlackJack3D

Viktor T. Toth:

It is often said that sound doesn’t travel in space. And it is true … in empty space. Sound is pressure waves, that is, propagating changes in pressure. In the absence of pressure, there can be no pressure waves, so there is no sound.

But space is is not completely empty and not completely devoid of pressure. Hence, it carries sound. But not in a manner that would match our everyday experience.

For instance, if you were to put a speaker in interstellar space, its membrane may be moving back and forth, but it would be exceedingly rare for it to hit even a single atom or molecule. Hence, it would fail to transfer any noticeable sound energy to the thin interstellar medium. Even the somewhat denser interplanetary medium is too rarefied for sound to transfer efficiently from human scale objects; this is why astronauts cannot yell to each other during spacewalks. And just as it is impossible to transfer normal sound energy to this medium, it will also not transmit it efficiently, since its atoms and molecules are too far apart, and they just don’t bounce into each other that often. Any “normal” sound is attenuated to nothingness.

However, if you were to make your speaker a million times bigger, and let its membrane move a million times more slowly, it would be able to transfer sound energy more efficiently even to that thin medium. And that energy would propagate in the form of (tiny) changes in the (already very tiny) pressure of the interstellar medium, i.e., it would be sound.

So yes, sound can travel in the intergalactic, interstellar, interplanetary medium, and very, very low frequency sound (many octaves below anything you could possibly hear) plays an important role in the formation of structures (galaxies, solar systems). In fact, this is the mechanism through which a contracting cloud of gas can shed its excess kinetic energy and turn into something compact, such as a star.

How fast do such sounds travel, you ask? Why, there is no set speed. The general rule is that for a so-called perfect fluid (a medium that is characterized by its density and pressure, but has no viscosity or stresses) the square of the speed of sound is the ratio of the medium’s pressure to its energy density. The speed of sound, therefore, can be anything between 0 (for a pressureless medium, which does not carry sound) to the speed of light divided by the square root of three (for a very hot, so-called ultrarelativistic gas).

This post originally appeared on Quora. Click here to view.

How Fossil Fuel Use Is Making Carbon Dating Less Accurate

iStock.com/Harry Wedzinga
iStock.com/Harry Wedzinga

The scientific process of carbon dating has been used to determine the age of Ötzi the Iceman, seeds found in King Tutankhamun’s tomb, and many other archaeological finds under 60,000 years old. However, as SciShow points out in a recent episode, the excessive use of fossil fuels is making that method less reliable.

Carbon dating, also called radiocarbon or C-14 dating, involves analyzing the ratio of two isotopes of carbon: C-14 (a radioactive form of carbon that decays over time) and C-12 (a more stable form). By analyzing that ratio in a given object compared to a living organism, archaeologists, paleontologists, and other scientists can get a pretty clear idea of how old that first object is. However, as more and more fossil fuels are burned, more carbon dioxide is released into the environment. In turn, this releases more of another isotope, called C-12, which changes the ratio of carbon isotopes in the atmosphere and skews the carbon dating analysis. This phenomenon is called the Suess effect, and it’s been well-documented since the ‘70s. SciShow notes that the atmospheric carbon ratio has changed in the past, but it wasn’t anything drastic.

A recent study published in Nature Communications demonstrates the concept. Writing in The Conversation, the study authors suggest that volcanoes “can lie about their age." Ancient volcanic eruptions can be dated by comparing the “wiggly trace” of C-14 found in trees killed in the eruption to the reference "wiggle" of C-14 in the atmosphere. (This process is actually called wiggle-match dating.) But this method “is not valid if carbon dioxide gas from the volcano is affecting a tree’s version of the wiggle,” researchers write.

According to another paper cited by SciShow, we're adding so much C-12 to the atmosphere at the current rate of fossil fuel usage that by 2050 brand-new materials will seem like they're 1000 years old. Some scientists have suggested that levels of C-13 (a more stable isotope) be taken into account while doing carbon dating, but that’s only a stopgap measure. The real challenge will be to reduce our dependence on fossil fuels.

For more on how radiocarbon dating is becoming less predictable, check out SciShow’s video below.

SECTIONS

arrow
LIVE SMARTER