13 Facts About Physicist Niels Bohr

Baron/Getty Images
Baron/Getty Images

Quantum physics might not be the most approachable topic, but there’s a good chance you’ve heard of some of its elemental parts, like atoms. In the early 20th century, Danish physicist Niels Bohr discovered the basic atomic structure—a positively charged nucleus surrounded by orbiting electrons—which laid the groundwork for how we understand atoms today. Here are 13 things you might not have known about Bohr.

1. HIS FATHER WAS NOMINATED FOR NOBEL PRIZES THREE TIMES IN TWO YEARS.

Niels Bohr, born in Copenhagen in 1885, was brought up in a family that valued science. His father Christian was a physiology professor at the University of Copenhagen, and he often hosted fellow scientists at his home for lively discussions. Young Niels and his two siblings often listened in, which likely inspired the young student’s future studies. Though he never won, Christian Bohr was nominated for the Nobel Prize by one colleague in 1907 and by two in 1908, all for his research on the physiology of respiration.

2. NIELS BOHR WAS A STELLAR STUDENT BUT A MEDIOCRE WRITER.

Bohr enrolled at the Gammelholm Latin School at age 7 and did well in all of his classes except for composition. According to the Niels Bohr Institute at the University of Copenhagen, he once turned in an essay that contained just two sentences: "A trip in the harbor: My brother and I went for a walk in the harbor. There we saw ships land and leave."

But by secondary school, he was correcting errors that he discovered in his physics textbooks. He excelled in the majority of his studies, and he graduated first in his class. Later in life, he penned a number of philosophical writings on physics, having overcome his youthful aversion to exposition.

3. HE SET OFF EXPLOSIONS IN HIS UNIVERSITY'S CHEMISTRY LAB.

Bohr began his university studies in 1903 at the same institution that employed his father, the University of Copenhagen. While he initially studied mathematics and philosophy, he won a physics competition sponsored by the Royal Danish Academy of Sciences, and he soon changed his major to physics. Bohr studied other fields, including inorganic chemistry, perhaps less successfully: He earned a reputation for causing explosions in the lab, and eventually broke a record amount of glass at the school. He would, however, go on to earn a master’s degree in 1909 and a doctorate in 1911 in physics.

4. BOHR DISAGREED WITH HIS PROFESSOR’S “PLUM PUDDING” THEORY.

After graduating, Bohr continued his studies at Cambridge University under J.J. Thomson, who had discovered the electron in 1897. Thomson had turned his attention to cathode rays, which were then believed to be part of the ether—a theoretical, weightless substance found everywhere in the universe. But he eventually determined that the rays were actually particles even smaller than the atom by showing that they could be deflected by electricity. This led Thomson to propose the “plum pudding” structure of atoms, in which negatively charged electrons are embedded in a sphere of positively charged matter, like raisins in a English pudding. Bohr would later contradict the “plum pudding” structure with his atomic model.

5. BOHR NAILED THE TRUE STRUCTURE OF AN ATOM IN 1913.

After finding his work at odds with Thomson’s, Bohr joined the Manchester University lab of Ernest Rutherford, who had also studied under Thomson. Rutherford had discovered the atomic nucleus through an experiment in which he shot alpha particles at a thin sheet of gold foil. Because some of the particles bounced back instead of going through the gold, he determined the majority of the atom’s mass must be within a small, central nucleus, with the electrons orbiting around it.

This became the foundation of his work with Bohr. The pair studied the structure of the atom, and Bohr determined Rutherford’s model must not be entirely correct. By the laws of physics, the orbiting electrons should eventually crash into the nucleus and destabilize the atom. Bohr eventually tweaked Rutherford’s model by explaining that the electrons orbiting a positively charged nucleus can jump between energy levels, which stabilizes the atoms.

6. HE FOUNDED COPENHAGEN’S INSTITUTE FOR THEORETICAL PHYSICS.

Based on his atomic research, the University of Copenhagen hired Bohr as a professor of theoretical physics in 1916 when he was just 31 years old. Soon after, he began pushing for a new institute for his field, which would allow researchers from all over the world to collaborate with Danish scientists at a state-of-the-art facility. He was granted approval, and the institute opened in 1921 with Bohr serving as director. (His mathematician brother Harald, a former Olympic soccer player, would go on to open the university’s mathematical institute next door nine years later.) In 1965 the university renamed the facility the Niels Bohr Institute, and today more than 1000 staff and students work and study there.

7. BOHR WON THE NOBEL PRIZE AT THE SAME TIME—AND IN THE SAME FIELD—AS ALBERT EINSTEIN.

Bohr and Einstein were not only contemporaries; they were good friends who partook in a series of conversations on physics over the course of decades, most notably at the 1927 Solvay Conferences now known as the Bohr–Einstein Debates. They argued two very different positions regarding the observations of electrons behaving as a particle in some experiments and a wave in others, even though an electron shouldn’t be able to be both. Bohr theorized the concept of complementarity to explain the phenomenon—that is, something can be two things at once, but we can only observe one of those things at a time. In establishing a fundamental principle of quantum mechanics, Bohr argued that the act of observation of particles brings them into existence, which is known as the Copenhagen Interpretation.

Einstein, on the other hand, argued that particles exist whether or not we actively observe them. (Imagine a very complex version of the “if a tree falls in the forest” question.) Even with their opposing theories, both were awarded the Nobel Prize in Physics in 1922: Bohr for his atomic model, and Einstein for his work on the photoelectric effect (instead of his then-controversial theory of relativity). So how did the two physicists receive prizes for the same thing in the same year? Einstein was actually awarded the 1921 prize a year late, due to a technicality.

8. THE CARLSBERG BREWERY GAVE BOHR UNLIMITED FREE BEER.

Danish beer giant Carlsberg, known for having its own laboratories to promote the study of natural sciences as they related to brewing, invited Bohr to live in its honorary residence, a house near its production facilities given to a deserving artist, scientist, or writer for life. It had a tap connected directly to the brewery for free beer. In 1932, Bohr and his family moved in, and stayed for the next 30 years.

The sweet real estate deal was not Carlsberg’s first interaction with the scientist. The brewery’s foundation helped Bohr pay for his research in England and funded the Institute for Theoretical Physics.

9. BOHR HELPED JEWISH SCIENTISTS ESCAPE THE NAZIS—UNTIL HE TOO HAD TO FLEE.

As the Nazis overran Europe at the height of World War II, Bohr helped scientists escaping the regime in Germany by providing them with funding, lab space, and temporary homes in Copenhagen. Bohr himself was forced to flee in 1943 after the Nazis overtook his country—Bohr’s mother was Jewish, and his entire family was persecuted. They fled Denmark on a fishing boat bound for Sweden, then Bohr and his son Aage were smuggled to England in the empty bay of a British Mosquito bomber plane. In London, he consulted with the Canadian and British governments’ ultra-classified program to develop nuclear weapons, code-named Tube Alloys.

10. HE USED THE ALIAS “NICHOLAS BAKER.”

In 1939, American officials had learned that Germany was attempting to build an atomic bomb. Five years later, the U.S. government invited Bohr to work on the Manhattan Project, its top-secret program to develop uranium- and plutonium-based nuclear bombs with the purpose of forcing the Axis nations to surrender. For two years, Bohr collaborated with American and British physicists at Los Alamos National Laboratory in New Mexico, using the name Nicholas Baker as a cover. In 1944, he wrote to British Prime Minister Winston Churchill with a progress report:

“What until a few years ago might be considered as a fantastic dream is at present being realized within great laboratories and huge production plants secretly erected in some of the most solitary regions of the United States. There a larger group of physicists than ever before collected for a single purpose, working hand in hand with a whole army of engineers and technicians, are preparing new materials capable of an immense energy release, and are developing ingenious devices for the most effective use of these materials. […]

“One cannot help comparing the situation with that of the alchemists of former days, groping in the dark in their vain efforts to make gold. Today physicists and engineers are, on the basis of firmly established knowledge, controlling and directing violent reactions by which new materials far more precious than gold are built up, atom by atom.”

11. BOHR WANTED NUCLEAR SCIENCE USED FOR PEACE.

He was a staunch believer in sharing the science behind nuclear weapons—a view not taken by U.S. and British leaders. Returning to Denmark after the war, Bohr directed his atomic research toward developing sustainable power rather than weapons. He and several colleagues established Risø, a research laboratory with a modern particle accelerator dedicated to developing nuclear energy for peaceful purposes, in the 1950s.

At the same time, Bohr co-founded the European Center for Nuclear Research (CERN), which held conferences and conducted research at Bohr’s Institute for Theoretical Physics for its first five years, prior to moving to Geneva, Switzerland, in 1957. The center now houses the Large Hadron Collider, the world’s largest particle accelerator, which generates electrical fields to speed up the movement of atomic particles and uses magnets to direct their flow. The collisions of the particles reveal information about their properties. Using the Large Hadron Collider, a team of researchers first observed a new type of particle, the Higgs boson, in 2012.

12. HIS SON AAGE ALSO WON A NOBEL PRIZE.

Bohr’s life wasn’t just focused on his work—he was a family man, too. He married Margrethe Nørlund in 1912, and they had six sons, four of whom survived into adulthood. His son Aage would follow closely in his father’s footsteps, becoming not only a physicist, but also the director of the Institute of Theoretical Physics (after his father passed away in 1962) and winner of the 1975 Nobel Prize in Physics for his research into the structure of atomic nuclei. The Bohrs are one of six father-son pairs to have each won a Nobel Prize (Niels Bohr’s professor J.J. Thomson and his son George Paget Thomson are another).

13. AN ELEMENT IS NAMED AFTER HIM.

Bohr still contributed to physics after his death—in a way. In 1981, German researchers succeeded in creating a single atom of Element 107, isotope 262, the result of bombarding bismuth atoms with chromium atoms. They named it Bohrium. The highly radioactive element does not occur in nature and, so far, only a few atoms of it have ever been created in a lab.

12 Facts About the Sense of Taste

iStock/m-imagephotography
iStock/m-imagephotography

A lot more than your tongue is involved in the process of tasting food. Taste is not only one of the most pleasurable of the five senses, but a surprisingly complex sense that science is beginning to understand—and manipulate. Here are 12 fascinating facts about your ability to taste.

1. Everyone has a different number of taste buds.

We all have several thousand taste buds in our mouths, but the number varies from person to person. The average range is between 2000 and 10,000. And taste buds are not limited to your tongue; They can be found in the roof and walls of your mouth, throat, and esophagus. As you age, your taste buds become less sensitive, which experts believe may be why foods that you don’t like as a child become palatable to you as an adult.

2. You taste with your brain.

The moment you bite into a slice of pie, your mouth seems full of flavor. But most of that taste sensation is happening in your brain. More accurately, cranial nerves and taste bud receptors in your mouth send molecules of your food to olfactory nerve endings in the roof of your nose. The molecules bind to these nerve endings, which then signal the olfactory bulb to send smell messages directly to two important cranial nerves, the facial nerve and the glossopharyngeal nerve, which communicate with a part of the brain known as the gustatory cortex.

As taste and nerve messages move further through the brain, they join up with smell messages to give the sensation of flavor, which feels as if it comes from the mouth.

3. You can’t taste well if you can’t smell.

When you smell something through your nostrils, the brain registers these sensations as coming from the nose, while smells perceived through the back of the throat activate parts of the brain associated with signals from the mouth. Since much of taste is odor traveling to olfactory receptors in your brain, it makes sense that you won’t taste much at all if you can’t smell. If you are unable to smell for reasons that include head colds, smoking cigarettes, side effects of medications, or a broken nose, olfactory receptors may either be too damaged, blocked, or inflamed to send their signals on up to your brain.

4. Eating sweet foods helps form a memory of a meal.

Eating sweet foods causes your brain to remember the meal, according to a 2015 study in the journal Hippocampus, and researchers believe it can actually help you control eating behavior. Neurons in the dorsal hippocampus, the part of the brain central to episodic memory, are activated when you eat sweets. Episodic memory is that kind that helps you recall what you experienced at a particular time and place. "We think that episodic memory can be used to control eating behavior," said study co-author Marise Parent, of the Neuroscience Institute at Georgia State. "We make decisions like 'I probably won't eat now. I had a big breakfast.' We make decisions based on our memory of what and when we ate."

5. Scientists can turn tastes on and off by manipulating brain cells.

Dedicated taste receptors in the brain have been found for each of the five basic tastes: sweet, sour, salty, bitter, and umami (savory). In 2015, scientists outlined in the journal Nature how they were able to turn specific tastes on or off in mice, without introducing food, by stimulating and silencing neurons in the brains. For instance, when they stimulated neurons associated with “bitter,” mice made puckering expressions, and could still taste sweet, and vice versa.

6. You can tweak your taste buds.

Most of us have had the experience of drinking perfectly good orange juice after brushing our teeth, only to have it taste more like unsweetened lemon juice. Taste buds, it turns out, are sensitive enough that certain compounds in foods and medicines can alter our ability to perceive one of the five common tastes. The foaming agent sodium lauryl/laureth sulfate in most toothpaste seems to temporarily suppress sweetness receptors. This isn't so unusual. A compound called cynarin in artichokes temporarily blocks your sweet receptors. Then, when you drink water, the cynarin is washed away, making your sweet receptors “wake up” so the water tastes sweet. A compound called miraculin, found in the herb Gymnema sylvestre, toys with your sweet receptors in a similar way.

7. The smell of ham can make your food “taste” saltier.

There’s an entire industry that concocts the tastes of the food you buy at the grocery store. Working with phenomena known as phantom aromas or aroma-taste interactions, scientists found that people associate “ham” with salt. So simply adding a subtle ham-like scent or flavor to a food can make your brain perceive it as saltier than it actually is. The same concept applies to the scent of vanilla, which people perceive as sweet.

8. Your taste buds prefer savory when you fly.

A study by Cornell University food scientists found that loud, noisy environments, such as when you’re traveling on an airplane, compromise your sense of taste. The study found that people traveling on airplanes had suppressed sweet receptors and enhanced umami receptors. The German airline Lufthansa confirmed that on flights, passengers ordered nearly as much tomato juice as beer. The study opens the door to new questions about how taste is influenced by more than our own internal circuitry, including our interactions with our environments.

9. Picky eaters may be “supertasters.”

If you’re a picky eater, you may have a new excuse for your extreme dislike of eggplant or sensitivity to the slightest hint of onion. You might be a supertaster—one of 25 percent of people who have extra papillae in your tongue. That means you have a greater number of taste buds, and thus more specific taste receptors.

10. Some of your taste preferences are genetic.

While genetics may not fully explain your love of the KFC Double Down or lobster ice cream, there may be code written into your DNA that accounts for your preference for sweet foods or your aversion to certain flavors. The first discovery of a genetic underpinning to taste came in 1931, when chemist Arthur Fox was working with powdered PTC (phenylthiocarbamide), and some of the compound blew into the air. One colleague found it to have a bitter taste, while Fox did not perceive that. They conducted an experiment among friends and family and found wide variation in how (and whether) people perceived the flavor of the PTC to be bitter or tasteless. Geneticists later discovered that the perception of PTC flavor (similar to naturally occurring compounds) is based in a single gene, TAS2R38, that codes for a taste receptor on the tongue. In a 2005 study, researchers at the Monell Chemical Senses Center found that the version of this gene also predicted a child's preference for sweet foods.

11. Your genes influence whether you think cilantro tastes like soap.

There may be no flavor more hotly debated or deeply loathed than the herb cilantro (also known as coriander). Entire websites, like IHateCilantro.com, complain about its “soapy” or “perfumy” flavor, while those who like it simply think it gives a nice kick to their salsa. Researchers at the consumer genetics company 23andMe identified two common genetic variants linked to people's “soap” perceptions. A follow-up study in a separate subset of customers confirmed the associations. The most compelling variant can be found within a cluster of olfactory receptor genes, which influence our sense of smell. One of those genes, OR6A2, encodes a receptor that is highly sensitive to aldehyde chemicals, which cilantro contains.

12. Sugar cravings have a biological basis.

Your urge for more hot fudge may have little to do with a lack of self-control. Scientists think that our yearning for sweets is a biological preference that may have been designed to ensure our survival. The liking for sweet tastes in our ancient evolution may have ensured the acceptance of sweet-tasting foods, such as breast milk and vitamin-rich fruits. Moreover, recent research suggests that we crave sweets for their pain-reducing properties.

Yes, You Have Too Many Tabs Open on Your Computer—and Your Brain is Probably to Blame

iStock.com/baona
iStock.com/baona

If you’re anything like me, you likely have dozens of tabs open at this very moment. Whether it’s news stories you mean to read later, podcast episodes you want to listen to when you have a chance, or just various email and social media accounts, your browser is probably cluttered with numerous, often unnecessary tabs—and your computer is working slower as a result. So, why do we leave so many tabs open? Metro recently provided some answers to this question, which we spotted via Travel + Leisure.

The key phrase to know, according to the Metro's Ellen Scott, is “task switching,” which is what our brains are really doing when we think we're multitasking. Research has found that humans can't really efficiently multitask at all—instead, our brains hop rapidly from one task to another, losing concentration every time we shift our attention. Opening a million tabs, it turns out, is often just a digital form of task switching.

It isn't just about feeling like we're getting things done. Keeping various tabs open also works as a protection against boredom, according to Metro. Having dozens of tabs open allows us to pretend we’re always doing something, or at least that we always have something available to do.

A screenshot of many tabs in a browser screen
This is too many tabs.
Screenshot, Shaunacy Ferro

It may also be driven by a fear of missing information—a kind of “Internet FOMO,” as Travel + Leisure explains it. We fear that we might miss an important update if we close out of our social media feed or email account or that news article, so we just never close anything.

But this can lead to information overload. Even when you think you're only focused on whatever you're doing in a single window, seeing all those open tabs in the corner of your eye takes up mental energy, distracting you from the task at hand. Based on studies of multitasking, this tendency to keep an overwhelming number of tabs open may actually be altering your brain. Some studies have found that "heavy media multitaskers"—like tab power users—may perform worse on various cognitive tests than people who don't try to consume media at such a frenzied pace.

More simply, it just might not be worth the bandwidth. Just like your brain, your browser and your computer can only handle so much information at a time. To optimize your browser's performance, Lifehacker suggests keeping only nine tabs open—at most—at one time. With nine or fewer tabs, you're able to see everything that's open at a glance, and you can use keyboard shortcuts to navigate between them. (On a Mac, you can press Command + No. 1 through No. 9 to switch between tabs; on a PC, it's Control + the number.)

Nine open tabs on a desktop browser
With nine or fewer tabs open, you can actually tell what each page is.
Screenshot, Shaunacy Ferro

That said, there are, obviously, situations in which one might need many tabs open at one time. Daria Kuss, a senior lecturer specializing in cyberpsychology at Nottingham Trent University, tells Metro that “there are two opposing reasons we keep loads of tabs open: to be efficient and ‘create a multi-source and multi-topic context for the task at hand.’” Right now, for example, I have six tabs open to refer to for the purposes of writing this story. Sometimes, there's just no avoiding tabs.

In the end, it's all about accepting our (and our computers') limitations. When in doubt, there’s no shame in shutting down those windows. If you really want to get back to them, they're all saved in your browser history. If you're a relentless tab-opener, there are also browser extensions like OneTab, which collapses all of your open tabs into a single window of links for you to return to later.

[h/t Travel + Leisure]

SECTIONS

arrow
LIVE SMARTER