13 Facts About Physicist Niels Bohr

Baron/Getty Images
Baron/Getty Images

Quantum physics might not be the most approachable topic, but there’s a good chance you’ve heard of some of its elemental parts, like atoms. In the early 20th century, Danish physicist Niels Bohr discovered the basic atomic structure—a positively charged nucleus surrounded by orbiting electrons—which laid the groundwork for how we understand atoms today. Here are 13 things you might not have known about Bohr.

1. HIS FATHER WAS NOMINATED FOR NOBEL PRIZES THREE TIMES IN TWO YEARS.

Niels Bohr, born in Copenhagen in 1885, was brought up in a family that valued science. His father Christian was a physiology professor at the University of Copenhagen, and he often hosted fellow scientists at his home for lively discussions. Young Niels and his two siblings often listened in, which likely inspired the young student’s future studies. Though he never won, Christian Bohr was nominated for the Nobel Prize by one colleague in 1907 and by two in 1908, all for his research on the physiology of respiration.

2. NIELS BOHR WAS A STELLAR STUDENT BUT A MEDIOCRE WRITER.

Bohr enrolled at the Gammelholm Latin School at age 7 and did well in all of his classes except for composition. According to the Niels Bohr Institute at the University of Copenhagen, he once turned in an essay that contained just two sentences: "A trip in the harbor: My brother and I went for a walk in the harbor. There we saw ships land and leave."

But by secondary school, he was correcting errors that he discovered in his physics textbooks. He excelled in the majority of his studies, and he graduated first in his class. Later in life, he penned a number of philosophical writings on physics, having overcome his youthful aversion to exposition.

3. HE SET OFF EXPLOSIONS IN HIS UNIVERSITY'S CHEMISTRY LAB.

Bohr began his university studies in 1903 at the same institution that employed his father, the University of Copenhagen. While he initially studied mathematics and philosophy, he won a physics competition sponsored by the Royal Danish Academy of Sciences, and he soon changed his major to physics. Bohr studied other fields, including inorganic chemistry, perhaps less successfully: He earned a reputation for causing explosions in the lab, and eventually broke a record amount of glass at the school. He would, however, go on to earn a master’s degree in 1909 and a doctorate in 1911 in physics.

4. BOHR DISAGREED WITH HIS PROFESSOR’S “PLUM PUDDING” THEORY.

After graduating, Bohr continued his studies at Cambridge University under J.J. Thomson, who had discovered the electron in 1897. Thomson had turned his attention to cathode rays, which were then believed to be part of the ether—a theoretical, weightless substance found everywhere in the universe. But he eventually determined that the rays were actually particles even smaller than the atom by showing that they could be deflected by electricity. This led Thomson to propose the “plum pudding” structure of atoms, in which negatively charged electrons are embedded in a sphere of positively charged matter, like raisins in a English pudding. Bohr would later contradict the “plum pudding” structure with his atomic model.

5. BOHR NAILED THE TRUE STRUCTURE OF AN ATOM IN 1913.

After finding his work at odds with Thomson’s, Bohr joined the Manchester University lab of Ernest Rutherford, who had also studied under Thomson. Rutherford had discovered the atomic nucleus through an experiment in which he shot alpha particles at a thin sheet of gold foil. Because some of the particles bounced back instead of going through the gold, he determined the majority of the atom’s mass must be within a small, central nucleus, with the electrons orbiting around it.

This became the foundation of his work with Bohr. The pair studied the structure of the atom, and Bohr determined Rutherford’s model must not be entirely correct. By the laws of physics, the orbiting electrons should eventually crash into the nucleus and destabilize the atom. Bohr eventually tweaked Rutherford’s model by explaining that the electrons orbiting a positively charged nucleus can jump between energy levels, which stabilizes the atoms.

6. HE FOUNDED COPENHAGEN’S INSTITUTE FOR THEORETICAL PHYSICS.

Based on his atomic research, the University of Copenhagen hired Bohr as a professor of theoretical physics in 1916 when he was just 31 years old. Soon after, he began pushing for a new institute for his field, which would allow researchers from all over the world to collaborate with Danish scientists at a state-of-the-art facility. He was granted approval, and the institute opened in 1921 with Bohr serving as director. (His mathematician brother Harald, a former Olympic soccer player, would go on to open the university’s mathematical institute next door nine years later.) In 1965 the university renamed the facility the Niels Bohr Institute, and today more than 1000 staff and students work and study there.

7. BOHR WON THE NOBEL PRIZE AT THE SAME TIME—AND IN THE SAME FIELD—AS ALBERT EINSTEIN.

Bohr and Einstein were not only contemporaries; they were good friends who partook in a series of conversations on physics over the course of decades, most notably at the 1927 Solvay Conferences now known as the Bohr–Einstein Debates. They argued two very different positions regarding the observations of electrons behaving as a particle in some experiments and a wave in others, even though an electron shouldn’t be able to be both. Bohr theorized the concept of complementarity to explain the phenomenon—that is, something can be two things at once, but we can only observe one of those things at a time. In establishing a fundamental principle of quantum mechanics, Bohr argued that the act of observation of particles brings them into existence, which is known as the Copenhagen Interpretation.

Einstein, on the other hand, argued that particles exist whether or not we actively observe them. (Imagine a very complex version of the “if a tree falls in the forest” question.) Even with their opposing theories, both were awarded the Nobel Prize in Physics in 1922: Bohr for his atomic model, and Einstein for his work on the photoelectric effect (instead of his then-controversial theory of relativity). So how did the two physicists receive prizes for the same thing in the same year? Einstein was actually awarded the 1921 prize a year late, due to a technicality.

8. THE CARLSBERG BREWERY GAVE BOHR UNLIMITED FREE BEER.

Danish beer giant Carlsberg, known for having its own laboratories to promote the study of natural sciences as they related to brewing, invited Bohr to live in its honorary residence, a house near its production facilities given to a deserving artist, scientist, or writer for life. It had a tap connected directly to the brewery for free beer. In 1932, Bohr and his family moved in, and stayed for the next 30 years.

The sweet real estate deal was not Carlsberg’s first interaction with the scientist. The brewery’s foundation helped Bohr pay for his research in England and funded the Institute for Theoretical Physics.

9. BOHR HELPED JEWISH SCIENTISTS ESCAPE THE NAZIS—UNTIL HE TOO HAD TO FLEE.

As the Nazis overran Europe at the height of World War II, Bohr helped scientists escaping the regime in Germany by providing them with funding, lab space, and temporary homes in Copenhagen. Bohr himself was forced to flee in 1943 after the Nazis overtook his country—Bohr’s mother was Jewish, and his entire family was persecuted. They fled Denmark on a fishing boat bound for Sweden, then Bohr and his son Aage were smuggled to England in the empty bay of a British Mosquito bomber plane. In London, he consulted with the Canadian and British governments’ ultra-classified program to develop nuclear weapons, code-named Tube Alloys.

10. HE USED THE ALIAS “NICHOLAS BAKER.”

In 1939, American officials had learned that Germany was attempting to build an atomic bomb. Five years later, the U.S. government invited Bohr to work on the Manhattan Project, its top-secret program to develop uranium- and plutonium-based nuclear bombs with the purpose of forcing the Axis nations to surrender. For two years, Bohr collaborated with American and British physicists at Los Alamos National Laboratory in New Mexico, using the name Nicholas Baker as a cover. In 1944, he wrote to British Prime Minister Winston Churchill with a progress report:

“What until a few years ago might be considered as a fantastic dream is at present being realized within great laboratories and huge production plants secretly erected in some of the most solitary regions of the United States. There a larger group of physicists than ever before collected for a single purpose, working hand in hand with a whole army of engineers and technicians, are preparing new materials capable of an immense energy release, and are developing ingenious devices for the most effective use of these materials. […]

“One cannot help comparing the situation with that of the alchemists of former days, groping in the dark in their vain efforts to make gold. Today physicists and engineers are, on the basis of firmly established knowledge, controlling and directing violent reactions by which new materials far more precious than gold are built up, atom by atom.”

11. BOHR WANTED NUCLEAR SCIENCE USED FOR PEACE.

He was a staunch believer in sharing the science behind nuclear weapons—a view not taken by U.S. and British leaders. Returning to Denmark after the war, Bohr directed his atomic research toward developing sustainable power rather than weapons. He and several colleagues established Risø, a research laboratory with a modern particle accelerator dedicated to developing nuclear energy for peaceful purposes, in the 1950s.

At the same time, Bohr co-founded the European Center for Nuclear Research (CERN), which held conferences and conducted research at Bohr’s Institute for Theoretical Physics for its first five years, prior to moving to Geneva, Switzerland, in 1957. The center now houses the Large Hadron Collider, the world’s largest particle accelerator, which generates electrical fields to speed up the movement of atomic particles and uses magnets to direct their flow. The collisions of the particles reveal information about their properties. Using the Large Hadron Collider, a team of researchers first observed a new type of particle, the Higgs boson, in 2012.

12. HIS SON AAGE ALSO WON A NOBEL PRIZE.

Bohr’s life wasn’t just focused on his work—he was a family man, too. He married Margrethe Nørlund in 1912, and they had six sons, four of whom survived into adulthood. His son Aage would follow closely in his father’s footsteps, becoming not only a physicist, but also the director of the Institute of Theoretical Physics (after his father passed away in 1962) and winner of the 1975 Nobel Prize in Physics for his research into the structure of atomic nuclei. The Bohrs are one of six father-son pairs to have each won a Nobel Prize (Niels Bohr’s professor J.J. Thomson and his son George Paget Thomson are another).

13. AN ELEMENT IS NAMED AFTER HIM.

Bohr still contributed to physics after his death—in a way. In 1981, German researchers succeeded in creating a single atom of Element 107, isotope 262, the result of bombarding bismuth atoms with chromium atoms. They named it Bohrium. The highly radioactive element does not occur in nature and, so far, only a few atoms of it have ever been created in a lab.

An Exercise in Poo-Tility: Scientist Tries to Make a Knife Out of Poop

Courtesy of Metin Eren
Courtesy of Metin Eren

Having a career in science often means enjoying the thrill of discovery. Gaining a better understanding of the world around us is among the most noble of professional pursuits. Other times, you may find yourself crafting a knife out of frozen feces.

In an experiment reported by Sapiens, researchers at Kent State University recently tested the validity of an old and possibly apocryphal tale involving an Inuit man whose family wanted him to join them in a new settlement. When he insisted on living a solitary life on the ice, the family took away his tools. The man indignantly used his bowel movement to forge a blade to kill a dog for his rib cage and hide—which he repurposed as a sled—and disappeared into the countryside. Scientists wanted to see if it would really be possible to create a bladed tool out of poop.

The study, published in the Journal of Archaeological Science, contains a spoiler in its title: “Experimental Replication Shows Knives Manufactured from Frozen Feces Do Not Work.” Lead author Metin Eren, director of archaeology and assistant professor of anthropology at Kent State, fully committed to the task, eating a high-protein diet typical of the Inuit for eight days and preserving his excrement. “Raw material collection did not begin until day four,” he writes, though it’s unclear whether that was due to a need to create distance from the remnants of a contemporary diet or whether he was constipated.

The waste was manipulated into two blades, one shaped by hand and the other by a knife mold, then frozen at -20°C. Immediately prior to use, they were subjected to dry ice at -50°C to ensure firmness. A metal file was used to hone the cutting edge.

A knife made from human feces is pictured pressed against pig hide
An exercise in poo-tility: The knife is unable to penetrate pig hide.
Courtesy of Metin Eren

Armed with this weaponized fecal matter, Eren tried to mimic how the Inuit would have used such a tool, attempting to cut into animal hide with it—in this case, pig hide. Lacking the properties of steel, the waste simply turned to mush when pressed against flesh. This remained the case even when Eren solicited the bowel contents of a colleague eating a more traditional Western diet. (A conversation that was unfortunately not recounted.) Only the most pliable subcutaneous fat of the pig could be penetrated before the knife became blunted.

“…Our results suggest that knives manufactured from frozen human feces are not functional,” Eren writes, adding that “we gave our knives the best possible chance to succeed and they still could not function.”

The value of a poop-based tool appears to be nil, but the story might still have resonance: scholars familiar with the tale believe it could have been a figurative attempt to describe the resourcefulness of the Inuit.

[h/t Sapiens]

How Two Biologists Put A Killer Whale Back Together, Bone by Bone

It might have been the splashing of harbor seals that caught his attention.

Without making a sound, the bullet-shaped killer whale named T44 might have turned and accelerated toward the seals through the clear, cold waters of British Columbia’s Johnstone Strait, gaining speed with each thrust of his powerful tail. He wouldn’t have been alone—several female whales and their calves, also part of northern Vancouver Island’s T pod, swam alongside him, and when they reached the group of plump harbor seals, they struck.

T44's black-and-white head would have shot out of the sea, veered in a half-turn to catch the flipper of the panicked seal in its teeth, and dragged it down below the surface. Using his paddle-shaped flippers like rudders, the orca might have breached again with the seal still in his jaws, arcing clear of the water before falling back.

We don’t know for sure—no one witnessed T44’s final hunt. But we do know that at some point, T44 swallowed the 100-pound seal, claws and all. He had chased down about 15 harbor seals in the week before this catch.

But this one, in March 2009, would be T44's last.

Not long after, fishermen found T44’s body floating in the strait, a narrow channel separating the rocky coasts of northeastern Vancouver Island and mainland British Columbia. The whale had been born there about 30 years earlier, and had never left the area.

T44's story wasn’t over, though. Its huge body would be salvaged and its bones stripped of flesh and oil. Mike DeRoos and Michi Main, two of the world's top skeleton articulators—people who rebuild an animal's bones into a scientifically accurate skeleton—would reassemble the cleaned bones in their workshop. From an inert puzzle of bone and steel, the couple would resurrect T44 in a true-to-nature pose for a local museum, giving the killer whale a second life.

 

Humans have been fascinated by killer whales’ savage intelligence for centuries. The Roman historian Pliny the Elder wrote that “their Likeness cannot be represented by any other Figure than that of a mighty Lump of Flesh, armed with terrible Teeth.” As the sea’s apex predators, orcas inspired legends among Pacific Northwest whaling peoples like the Makah and Nuu-Chah-Nulth. In the 18th century, naturalist Carl Linnaeus named them Delphinus orca, or “demon dolphin.” Their current scientific name, Orcinus orca, translates to “demon from hell.”

Telegraph Cove British Columbia
Telegraph Cove on Vancouver Island, British Columbia
David Stanley, Flickr // CC BY 2.0

Modern scientists are just beginning to study and understand the animals' culture. The northern Pacific Ocean is home to three killer whale ecotypes—populations that are genetically, behaviorally, and geographically distinct from one another. Endangered resident killer whales mainly eat salmon, while little is known about offshore killer whales, which prowl the edge of the continental shelf.

T44 was a transient killer whale, the ecotype that specializes in hunting marine mammals. (In the 1970s, marine biologist Michael Bigg noted they had taller dorsal fins and didn’t interact with the residents, leading him to conclude that they were just passing through—transients, in other words. They're also called "Bigg’s killer whales.") They roam the coastal waters of British Columbia, where the channels and bays of the Inside Passage brim with seals, sea lions, porpoises, dolphins, and baleen whales. Groups of transients are known to take on gray whale calves and minke whales. Humpback whales, twice as long and five times heavier than a fully grown orca, have been seen with rake marks on their flukes and flippers from the transients’ teeth.

T44 killer whale at Telegraph Cove, British Columbia in 2007
T44, identified by his distinctive dorsal fin shape, swims by Telegraph Cove in 2007.
Jared Towers

When hunting, transients rely on stealth. Traveling in small groups of four or five, they passively listen for the splash of a seal, the whoosh of a minke surfacing to exhale, or the call of a mother gray whale to her calf. One transient group may signal other transients with quiet clicks at specific intervals, inviting them to join the hunting party; biologists believe transients share a limited vocabulary to aid communication between unrelated groups. Then, the killers attack with shocking ferocity. They seem to like playing with their prey before tearing it to pieces. “If people see them hunting, there’s often red blood in the water, and it can be kind of gruesome,” DeRoos, the skeleton articulator, tells Mental Floss. A soft-voiced biologist who speaks thoughtfully about cetacean murder, DeRoos has been studying orcas and rebuilding their bones for more than 15 years. “They’re the real killer whale,” he adds.

Born in 1978, T44 was the 44th identified whale in the transient population around the northern end of Vancouver Island. He spent almost all of his life in the waters around Telegraph Cove, a tiny settlement on the island’s east coast. Crowded by dense cedar forest on one side and Johnstone Strait on the other, the former fishing and cannery village is now a seasonal hub for eco-tourism. Between May and October, thousands of visitors come to see the strait’s humpback whales blow prismatic jets of vapor and Steller sea lions pose on the rocks. Most tourists hope to glimpse the orcas as they chase 30-pound Chinooks or punt hapless dolphins into the air.

Killer whale T44 towed to Telegraph Cove harbor in British Columbia
Jim Borrowman and Graeme Ellis tow the body of T44 to Telegraph Cove so biologists can perform a necropsy on the killer whale.
Courtesy of Mary Borrowman

Jim Borrowman, one of about 12 year-round residents of Telegraph Cove, opened the village’s Whale Interpretive Centre in 2002 after co-founding British Columbia’s first whale watching company in 1980. The center exhibits skeletons of cetaceans common to local waters, including a 60-foot fin whale and a gray whale, whose carcasses were found floating near Telegraph Cove.

It was Borrowman who received the phone call on March 31, 2009, about a dead killer whale in Johnstone Strait. The Canadian Coast Guard had identified it as an orca and called Graeme Ellis, a local killer whale researcher and Borrowman's friend. “Graeme called me up and said, ‘We’ve got this dead killer whale. The [Coast Guard] ship tied it up in a bay on the north end of the island,’” Borrowman, a garrulous old salt, tells Mental Floss. “Graeme said he wanted to try and figure out if we could identify it still—once these whales die, they lose their skin quite quickly and all their identifying marks. But he definitely wanted to do a necropsy [to find the cause of death]. These are very rare finds and very important finds.”

“I really wanted a bigger killer whale for the museum; I have a juvenile already,” Borrowman adds. “Graeme said, ‘If you can tow it down, you can have it.’ I said, ‘Hurry and get here!’”

From Telegraph Cove, the two men drove Borrowman’s whale-watching boat to where the Coast Guard ship had secured the orca. Major decomposition had yet to set in, and Ellis recognized it right away. “We knew it was a Bigg’s type. T44 had a big nick on the back edge of the dorsal fin. And there were a few scratches left on the saddle patch area, some marks there, so Graeme could positively identify it,” Borrowman says.

They worked quickly to tie a thick nylon line around the whale’s flukes as gale-force winds whipped up. As they towed T44 behind the boat toward Telegraph Cove, the 7-ton whale snapped the tow line, but Borrowman managed to rehook it. They waited out the storm overnight on shore. A light snow was falling the following morning when they arrived in Telegraph Cove, where 18 scientists were waiting with flensing knives in hand.

 

The first step in preparing T44 for his second life took days. First, the scientists, who came from the island's Pacific Biological Station, "spent all day cutting all the bones completely apart and trimmed as much of the meat off as we could. During this time, [biologist] Steven Rafferty took measurements and collected all the samples he needed,” Borrowman says.

Killer whale skull and vertebrae in skeleton articulation workshop
T44's skull rests on a workbench while the vertebrae are mounted on the steel bar.
Mike DeRoos

T44 appeared to be a healthy, mature 31-year-old male, about 25.5 feet long and roughly 15,000 pounds, with no bruising or obvious signs of a ship strike. (The average lifespan of a male orca is about 30 years, while females live for an average of 50 years, and some much longer.) There were more than 300 seal claws in T44’s stomach, indicating that he ate roughly 15 to 20 harbor seals in his final week, along with two yellow plastic flipper tags from juvenile elephant seals. Researchers were unable, however, to point to a cause of death based on tissue samples. “It could simply be that he lived and died a fairly normal life,” Borrowman says.

When the necropsy was complete, the biologists turned the carcass over to Borrowman. He and a few others continued cutting the skeleton apart for several more days. Now, the months-long process of cleaning and degreasing T44’s skeleton for display in the Whale Interpretive Centre began. Every morsel of rotting muscle and blubber, every cartilaginous tendon and bit of skin, would need to be removed from the exterior of the bones. Every pint of oil, which helps keep live whales buoyant, would have to be drained from their porous tissue.

From his earlier experience denuding the 60-foot, 60-ton fin whale, Borrowman had determined that sea scavengers—fish, crabs, shrimp, and microbes—are the best cleaners for the job. The fish and crustaceans pick off the flesh, while marine bacteria burrow into the bone. In the cold waters of Johnstone Strait, the oil would solidify into a wax for them to devour.

The crew put T44’s skull in netting to hang it from a dock, while the mandibles, including the teeth, went into large apple juice barrels with holes punched in the lids. Pectoral fins—which were so heavy it took four men to lift them—were secured in large fish totes and weighted down. They tied all of the loose ribs together in bundles and strung about three dozen star-shaped vertebrae on lines. Then, they heaved everything into Telegraph Cove harbor.

“The meat goes quickly,” Borrowman says. “The problem is that every species, and every age of every species, has a different amount of oil in it and time period that it takes to get it out. And there’s no book on that.” Any oil that remains in the bones will ooze out, drop by drop, sometimes for decades.

T44’s bones remained underwater for a year. In the spring of 2010, Borrowman brought up the bundles and barrels, encrusted with barnacles and anemones, and pried off the lids. He spread the cleaned bones on Telegraph Cove’s dock so the sun’s heat could liquify most of the remaining oil, which took several months to drain out. Later, he put some of the individual bones on display in the Whale Interpretive Centre for a few years.

Then, he hired Mike DeRoos and Michi Main to put T44 back together.

 

DeRoos and Main, a husband-and-wife skeleton articulating team, operate from their home and workshop on Salt Spring Island, just down the main highway from Telegraph Cove. Both are trained as biologists; DeRoos learned the art of putting skeletons together as one of the first student workers hired at the Whale Interpretive Centre in 2002. “I grew up working with my dad, building things. I’ve always loved working with my hands and figuring out how to put things together. Building skeletons just seemed like the extension of that,” DeRoos says. “If I hadn’t become a biologist, I probably would have gone into engineering.”

Killer whale skull, vertebrae, and ribs mounted on steel supports
T44's skull and ribs are mounted on to the backbone.
Mike DeRoos

In September 2017, Borrowman delivered T44 to the workshop. The bones would need no further degreasing, but that hasn’t been the case with every project DeRoos and Main have worked on. After the marine scavengers and the sun’s rays do their jobs, DeRoos will often bury skeletons in big piles of horse manure for up to six months. The heat of the composting process transforms the oil from a viscous, coconut-oil consistency to a flowing liquid, and microbes in the manure will consume most of it. To get bones completely oil-free, DeRoos will employ an industrial-strength vapor degreaser—a type of machine originally used in aerospace manufacturing facilities to clean out aircraft engines. The degreaser uses solvents to dissolve any remaining oil in the bones in a few hours.

Cleaning the bones of every speck of oil and tissue is essential, because whale guts in any stage of decomposition are not pleasant. “It can have a really rancid, fishy, rotting flesh smell—or, if it’s really fresh, it just has sort of a warm, semi-sweet, bloody fish smell,” DeRoos says. “If you get the tiniest little bit of rotten whale guts on your clothing or on your body, the smell will really follow you. The worst thing, the very worst thing, is when it’s late at night, after you’ve cleaned up from working, it follows you into your house, into places where it shouldn’t be.”

“Some people naturally have a stronger stomach than others,” he adds. “Mine is able to handle a lot of pretty bad stuff.”

By early 2018, the fully degreased, cream-colored pieces of T44 lay in piles around DeRoos’s workshop. The tusk-like ribs spooned on a tarp. The whale’s massive skull was propped on a workbench, seeming to watch DeRoos and Main as they planned T44’s next phase.

Long before the couple begins articulating an animal’s skeleton, they conduct hours of research to learn as much as they can about the species’ natural history. As biologists, they have spent the summer months out on boats in the glacier-hewn channels and straits of British Columbia, monitoring marine mammals and watching how they behave. They’ll consult other scientists and browse their photos of the species from the field. And they'll also watch videos of the animals underwater to understand the nuances of their movement—"to put our own minds into the body of the animal we’re working on," DeRoos says. “Seeing live animals really inspires what I do with the dead ones.”

Mike DeRoos works on the killer whale rib cage
Mike DeRoos works on the killer whale's rib cage.

With a particular set of bones to be articulated, DeRoos and Main will consider the animal’s age, sex, and geographical origin, and look for imperfections that could serve as clues to the animal’s life. “I look at every bone of the skeleton and pick out the abnormalities, like if the animal had a broken rib or a disease in one place that has altered the bones,” he says. “That gives you an intimate, first-hand story about how the animal really lived.”

The details help shape the final narrative of the skeleton, which DeRoos and Main evoke through its posture and the setting where it will eventually be installed. For an earlier killer whale skeleton that is now exhibited at the Noyo Center for Marine Science in Fort Bragg, California, they worked from the contents of its stomach—six harbor seals—to design a posture highlighting “the ferocity, efficiency, and amazing characteristics of this hunter in the ocean,” Main says. “When people come in and experience an exhibit, they have the opportunity to really interact with a killer whale’s jaws, those big teeth. That can really be a good hook to draw people in. We decided [on] this really dynamic rolling, diving hunting posture with its jaws wide open—so when people walk into that exhibit, they walk right into the mouth of this killer whale. You can almost imagine yourself as the prey.”

Skeleton articulator Michi Main and an assistant assemble killer whale flipper bones
Michi Main (left) assembles the flipper bones on the steel support bars. Baby Kaito and assistant Nikoya Catry-Bauer help out.
Mike DeRoos

DeRoos and Main also looked at the space in the Whale Interpretive Centre where T44 would eventually reside. After talking with Borrowman about how he wanted to fit the skeleton into the museum, they decided on positioning the whale in a sharp, banking right turn, diving down as though he were chasing escaping prey. “I started imagining T44 among a group of killer whales, attacking a sea lion, ramming it with their heads, attacking it again, making tight maneuvers around the kill,” DeRoos says. “That’s a dynamic story to tell.”

Back in their workshop, DeRoos and Main faced the challenge of correctly assembling T44 as he was in life. There is no standard manual for orca anatomy, and scientists still aren't sure how many bones an orca is supposed to have. Most killer whales have about 180 bones; within that number are between 53 and 58 vertebrae, 11 to 12 pairs of ribs, and a widely varying number of flipper bones, plus the skull, jaws, and teeth. The bone totals vary among individual whales even within the same species.

That makes articulation based on previous models and skeletons a guessing game. They’ve consulted old Russian whaling texts, which contained the earliest reliable records of killer whale anatomy, for clues. They also examine 3D scans of skeletons they’ve worked on previously, which gives them a framework for conceptualizing the right number and position of bones in their current project.

Replica teeth to be placed in a killer whale skull
The 3D-printed teeth wait to be placed in T44's jaws.
Mike DeRoos

For T44, DeRoos and Main drew scaled-down sketches to make sure their vision for the skeleton was actually something a living whale could do. Using the drawings and DeRoss’s engineering skills, they fashioned the sections of strong but lightweight steel armature that would underlie the entire finished skeleton.

First, they created the steel beams to hold the heaviest pieces—the 110-pound skull and jawbones—in place. Then, they used a hydraulic pipe bender on a huge steel bar that would support the hefty spine and ribs. The big vertebrae were the literal backbone of the entire project; once the steel pipe was bent into the final position evoking a diving orca, the vertebrae were mounted on the support with steel pins. DeRoos and Main had to get these pieces in perfect position before moving on. “The key to all this is having spent time in the field with living whales,” he says. “You have to have a good plan, because you can’t go back once the bones are on.”

From there, the ribs were attached with steel cables onto another steel support, which presents a challenge. “The ribs are finicky," DeRoos says. "If they’re misaligned, it makes the whole thing look bad, because in a living animal they work together seamlessly.” He also mounted the amazing number of flipper bones—imagine the skeletons of two huge human hands, with five to seven joints in each finger—along thin steel rods. Most of the body's supports are hidden behind the larger bones, while flipper mounts blend in between the smaller pieces. He finished off the mess of cables and steel bars with permanent epoxy glues, then removed the temporary supports.

“This elegant mount has no visible external structure, and that really allows people to see what is out in nature. It helps to convey the story in a big way,” Main says.

Killer whale rib cage and vertebrae in the back of a pickup truck
T44's ribs and vertebrae are packed in the pickup for their journey to the Whale Interpretive Centre.

But then, they ran into a problem. Some of the bones were missing—likely lost while they lay in Telegraph Cover harbor, scattered by currents or accidentally cut loose by a passing boat's propeller. “The last 5 feet of tail—about 14 vertebrae—and the entire sternum, plus a couple of sternum ribs, were missing,” DeRoos says. “And we had only about two-thirds of the chevron bones, which fit underneath the tail vertebrae and protect the major blood vessel running back there. There should be about 14 and we had, like, six.”

He turned to 3D printing, comparing T44’s existing bones to those of five other killer whale skeletons in their workshop to find one that most closely matched T44’s dimensions. A slightly older male northern resident killer whale named I46, a salmon-eater from British Columbia, filled in. “We measured [I46] in three or four different ways to come up with a scaling factor for width and height. We scanned I46’s bones and applied the scaling factor to basically blow them up a bit in size to match what was missing from T44, and that’s what we had printed,” he says. “Once we get these bones mounted and painted and on the skeleton, I don’t think anyone would be able to distinguish them as replicas.”

As a finishing touch, T44 got a set of false teeth—not because he had had poor dental hygiene, but because an orca’s solid ivory teeth, each weighing a quarter-pound, can be irresistible souvenirs. “People will walk off with them or try to pull them out of the skeleton,” DeRoos says, sighing. As a solution, he cast each tooth in plastic resin, and a team of volunteers hand-painted the set, which will be bolted to the jaw. “They took each original tooth and matched the paint color, the details, and the stains using artists’ acrylics. They put a matte gloss on the tooth itself and a shiny gloss on the tips,” he says. “They’re virtually indistinguishable from the originals.”

 

Finally, in May 2018, the couple readied T44 for his new life. DeRoos and Main, their three kids, DeRoos’s parents, and several friends drove up to Telegraph Cove in a parade of pickups, the skeleton in five large articulated sections lashed onto trailers. The Whale Interpretive Centre had been prepared for their arrival; the staff had moved the fin whale and smaller orca skeletons out of the way and exhibits had been temporarily pushed to the side. The team planned to assemble the sections on the floor of the hangar-like space—a difficult task when you’re trying to connect several hundred pounds of backbone and ribs to another hundred pounds of backbone by aligning screw-hole to screw-hole. But T44 slid together without a hitch.

Killer whale skeleton mounted in a museum
Now fully assembled, T44 is mounted from the ceiling at the Whale Interpretive Centre.
Mike DeRoos

The team then rigged the completed skeleton with strong ropes, attached to a system of chain hoists, and raised it toward the ceiling, inch by inch. DeRoos checked its position; T44’s big ribcage and string of vertebrae came pretty close to the building’s interior posts. “I wasn’t sure how we’d be able to position his flippers, but we managed to fit everything,” he says. “The really fun part was when we put his lower jaws on. The big, impressive teeth were a hit with everyone.”

Now, T44 hovers overhead like the apex predator he was, menacing an imaginary sea lion in the cold, clear waters of Johnstone Strait. DeRoos pictures him diving down among the kelp, circling his frantic prey, beating it to a pulp exactly as he had when he was alive.

After nine years and thousands of hours of labor, T44 was back home.

Select photography courtesy of Taylor Roades. This story was made possible in part by the Institute for Journalism and Natural Resources.

SECTIONS

arrow
LIVE SMARTER