CLOSE
iStock
iStock

If Earth is Always Moving, Then How Do We See the Same Constellations Every Night?

iStock
iStock

Luis Medrano:

6700 mph is nothing in cosmological speeds and distances. Constellations are freakin’ far away.

Get in a car at night and drive on a straight road, then look at the moon. The angle of the moon in respect to your point of view doesn’t change; it seems like the moon is following you wherever you go. Meanwhile, things that are really close to you—like electric poles, roadside buildings, and trees—seem to fly by really fast.

The effect is known as parallax. Things that are close seem to move faster and “travel more distance” (not really) than things that are far away.

In the video above, there are several objects in perspective. The light in the center, which represents the sun, was placed so far away you can barely see it move.

The sun is only eight light-minutes away; that’s 146 million km on average. At human scale it seems like a lot, but in cosmic distances it is nothing. Orion, for example, has stars that are from 243 to 1360 light years away from us. Imagine traveling at the speed of light for 1360 years. That’s how far these stars are. And these are not even the farthest stars. Some stars are Giga-light years away from us.

Now, with the proper precision instruments you can indeed notice the parallax in distant stars, just not with the naked eye. Furthermore, our solar system has moved so much since the early days of astronomy and astrology, the constellations do not correspond to the early astrology maps. The constellations appear shifted.

As a free info nugget: In case your life is ruled by astrology, whatever sign you think you are, you are not.

This post originally appeared on Quora. Click here to view.

nextArticle.image_alt|e
iStock
arrow
Big Questions
Why Is the American Flag Displayed Backwards on Military Uniforms?
iStock
iStock

In 1968, famed activist Abbie Hoffman decided to crash a meeting of the House Un-American Activities Committee in Washington by showing up in a shirt depicting the American flag. Hoffman was quickly surrounded by police, who ripped his shirt off and arrested him for desecration of the Red, White, and Blue.

Hoffman’s arrest is notable today because, while it might be unpatriotic to some, wearing the American flag, burning it, or otherwise disrespecting it is not a violation of any federal law. In 1989, the Supreme Court ruled that it would be unconstitutional to prosecute any such action. Still, Americans have very fervent and strict attitudes toward displaying the flag, a longstanding symbol of our country’s freedom. According to the U.S. Flag Code, which was first published in 1923, you shouldn’t let the flag touch the ground or hang it upside-down. While there’s no express prohibition about reversing the image, it’s probably a safe bet you shouldn’t do that, either.

Yet branches of the U.S. military are often spotted with a seeming mirror reflection of the flag on their right shoulder. If you look at a member in profile, the canton—the rectangle with the stars—is on the right. Isn’t that backwards? Shouldn’t it look like the flag on the left shoulder?

The American flag appears on a military uniform
iStock

Not really. The flag is actually facing forward, and it’s not an optical illusion.

When a service member marches or walks forward, they assume the position of a flagpole, with the flag sewn on their uniform meant to resemble a flag flapping in the breeze. With the canton on the right, the flag would be fluttering behind them. If it were depicted with the canton on the left, the flag would be flying backward—as though it had been hung by the stripes instead of the stars nearest to the pole. The position of the flag is noted in Army Regulation 670-1, mandating the star field should face forward. The official term for this depiction is “reverse side flag.”

As for Hoffman: His conviction was overturned on appeal. In 1970, while at a flag-themed art show in New York, he was invited to get up and speak. He wore a flag shirt for the occasion.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

nextArticle.image_alt|e
Mark Ralston/AFP/Getty Images
arrow
Big Questions
What Causes Sinkholes?
Mark Ralston/AFP/Getty Images
Mark Ralston/AFP/Getty Images

This week, a sinkhole opened up on the White House lawn—likely the result of excess rainfall on the "legitimate swamp" surrounding the storied building, a geologist told The New York Times. While the event had some suggesting we call for Buffy's help, sinkholes are pretty common. In the past few days alone, cavernous maws in the earth have appeared in Maryland, North Carolina, Tennessee, and of course Florida, home to more sinkholes than any other state.

Sinkholes have gulped down suburban homes, cars, and entire fields in the past. How does the ground just open up like that?

Sinkholes are a simple matter of cause and effect. Urban sinkholes may be directly traced to underground water main breaks or collapsed sewer pipelines, into which city sidewalks crumple in the absence of any structural support. In more rural areas, such catastrophes might be attributed to abandoned mine shafts or salt caverns that can't take the weight anymore. These types of sinkholes are heavily influenced by human action, but most sinkholes are unpredictable, inevitable natural occurrences.

Florida is so prone to sinkholes because it has the misfortune of being built upon a foundation of limestone—solid rock, but the kind that is easily dissolved by acidic rain or groundwater. The karst process, in which the mildly acidic water wears away at fractures in the limestone, leaves empty space where there used to be stone, and even the residue is washed away. Any loose soil, grass, or—for example—luxury condominiums perched atop the hole in the ground aren't left with much support. Just as a house built on a weak foundation is more likely to collapse, the same is true of the ground itself. Gravity eventually takes its toll, aided by natural erosion, and so the hole begins to sink.

About 10 percent of the world's landscape is composed of karst regions. Despite being common, sinkholes' unforeseeable nature serves as proof that the ground beneath our feet may not be as solid as we think.

A version of this story originally ran in 2014.

SECTIONS

arrow
LIVE SMARTER